Tuesday, September 24, 2013

New Compressed Air Storage Deals Fatal Blow To Zombie Lies About Wind And Solar

We don’t expect the wind and solar naysayers to give up any time soon, but new utility-scale energy storage solutions are beginning to come on line, and they will put to rest this whole notion that intermittent energy sources (namely, wind and solar) can’t provide a significant proportion of reliable power to the national grid.

The latest development comes from a company called SustainX, Inc. The technology is called an isothermal compressed air energy storage system, and since we’ve been following its progress for the past several years we’re happy to tell you that SustainX has completed construction of its first utility scale system. It was hooked up to the grid earlier this month and it’s now in the process of revving up to speed.

Isothermal Compressed Air Energy Storage System

An Isothermal Compressed Air Energy Storage System

We first took note of SustainX back in 2009, when it spun out of Dartmouth College. The goal was to store four megawatt-hours worth of energy in transportable 40-foot long containers, while achieving a 70% reduction in the amount of energy needed for conventional compressed air energy storage (CAES) systems.

Last year, the company took a big leap forward by entering a technology licensing agreement with the University of Minnesota.

Isothermal refers to storage of compressed air at a constant temperature, which is a key element in the improved energy efficiency of the system.

The new SustainX CAES system is located in New Hampshire, at the SustainX headquarters. As SustainX describes it, the new system represents a next-generation improvement over earlier CAES systems dating back to the 1970′s which typically are located underground and run on fossil fuel.

The SustainX system was designed to run on grid-supplied electricity, so depending on the local grid mix it can potentially run exclusively on emission free sources including wind and solar. That also means that it is not dependent on caves or other geological quirks for site selection.

Some patented, cutting edge tweaks by SustainX make all the difference, but other than that, the entire system consists of practically nothing but steel, water, and air. Here’s how it works:

A mechanical drivetrain utilizes an electric machine and a crankshaft…This efficient mechanical link powers a two-stage, mixed-phase (water-in-air) heat-transfer process within pneumatic cylinders. During piston strokes, water is sprayed into the air-filled chamber of each cylinder, allowing heat to be transferred from water to air during expansion or from air to water during compression. The same ICAES power unit provides both isothermal compression and expansion, eliminating the cost of separate compressor and expander subsystems.

We Built This CAES!

If the new facility proves successful we taxpayers can all do a group hug because SustainX received a $5.4 million award from the Department of Energy to help accelerate the project, as part of the Obama Administration’s Smart Grid initiatives.

The project, which also includes private sector investors, appears to be on track. Completion of the test phase is due by the end of this year and a final technology report is due in 2015.

CAES and other new storage technologies fit into the Smart Grid concept partly by eliminating the need to construct new peaking plants. Peaking plants, which typically run on natural gas, are designed to come on line quickly to address demand spikes, but most of the time they sit idle, which means that they are a very expensive way to provide for variations in local energy consumption to say nothing of their dependence on fossil fuel sources.

In terms of the levelized cost of energy (LCOE, not to be confused with EROI), a mechanically simple system like the SustainX solution has some clear advantages over building new peaking plants, including the potential for far lower operating, maintenance and repair costs in addition to lower fuel costs.

In the past, CAES systems were primarily sited to take advantage of caves and other geological quirks, so the Smart Grid goal of developing more geographically flexible, above ground systems is also critical if CAES is to play a major role in the national grid. More

 

Thursday, September 19, 2013

UNSG Issues Recommendations on Clean Technology


18 September 2013: A report of UN Secretary-General Ban Ki-moon, on 'Options for facilitating the development, transfer and dissemination of clean and environmentally sound technologies,' finds that Member States and stakeholders share the objective of accelerating technology facilitation, but differences exist on the details and approaches. The report follows on a mandate in the outcome document of the UN Conference on Sustainable Development (UNCSD, or Rio+20).


The report (A/68/310) summarizes written inputs and discussions from four workshops that discussed, inter alia: developing countries' technology needs; options to address these needs; capacity building; and options for a technology facilitation mechanism.


Workshop participants supported a comprehensive approach for technology facilitation, stressing the challenge goes beyond technology transfer. They found that capacity building focuses on later stages of the technology cycle, particularly diffusion, with little emphasis on strengthening capacity in earlier stage activities such as research and development.


On renewable energy, the report urges action on, inter alia: increasing energy access, particularly for the poor; closing the gap between what needs to be done to avoid rising temperatures and what has been pledged at the UN Framework Convention on Climate Change (UNFCCC); and addressing the 'artificial divide' between climate mitigation and energy access. To help eradicate poverty, it calls for greater attention to clean, environmentally sound technologies in sectors such as agriculture, noting that renewable energy and sustainable transport dominate technology transfer discussions in the context of climate change mitigation.


The report concludes with three types of recommendations. Recommendations on initiatives that can be acted upon without institutional reforms include: conducting methodological examinations of achievements and needs on the topic through a framework such as the High-level Political Forum for Sustainable Development (HLPF); fostering a global reporting system and demonstration projects on relevant technologies; and mobilizing UN support for the agreed technology bank for Least Developed Countries (LDCs).


Recommendations on initiatives that individual countries or groups could voluntarily act upon include: considering a Sustainable Development Goal (SDG) or targets on technology; and promoting voluntary national peer reviews of relevant technologies and options.


Recommendations on initiatives proposed by participants but not universally accepted include: creating a forum within the UN for a regular dialogue on the topic; and creating a UN global technology facilitation mechanism.


The report, dated 18 August, was circulated as an official document on 18 September. It is expected to be taken up in the UN General Assembly's (UNGA) Second Committee during the 68th Session. [Publication: Options for facilitating the development, transfer and dissemination of clean and environmentally sound technologies: Report of the Secretary-General] [IISD RS Story on Workshop Report] [Reports of UN Secretary-General to Second Committee] More






 

Wednesday, September 11, 2013

How solar and EVs will kill the last of the industry dinosaurs

Several years ago, Tony Seba, an energy expert from Stanford University, published a book called Solar Trillions, predicting how solar technologies would redefine the world’s energy markets and create an investment opportunity worth tens of trillions of dollars.

Most people looked at him, he says, as if he had three heads. That was possibly because the book was written before the recent plunge in the cost of solar modules had taken effect, and before most incumbent utilities had woken up to the fact that solar – even with minor penetration levels – was turning their business models upside down.

Seba is now working on a new book, with even more dramatic forecasts than his first. His new prediction is that by 2030, solar will make the fossil fuel industry more or less redundant. Even more striking is his forecast that electric vehicles will do the same thing to the oil industry by around the same date.

The predictions are made on the basis that the cost of solar and EV batteries will continue to fall, while the cost to consumers of sourcing energy from fossil fuels through the grid or liquid fuels will continue to rise. Before the decade is out, Seba says, both technologies will pass a tipping point that will eventually sweep the incumbents aside, just as technology and cost developments have done in the computer, internet, media, photographic and telecommunications industries.

“I am incredibly optimistic that by 2030, nuclear, coal, gas, big hydro, and oil will be all but obsolete,” Seba toldRenewEconomy in an interview in San Francisco last month. “The world will be mostly powered by solar and wind, and most new vehicles will be electric. The architecture of energy markets is going from centralized to distributed – in liquids and the electric market.”

The working title for the book is “Disrupting energy – how Silicon Valley is making coal, nuclear, oil and gas obsolete.” It is pinned on the theme that decentralised generation and storage will replace the centralised, hub and spoke model that has prevailed for the last century. The impact of decentralised generation is already being felt. The striking part of Seba’s prediction is the speed with which it will happen.

First, on the technology cost issue. For EVs, Seba says the success of Tesla – in sales and in reputation – has changed the conversation around EVs, particularly after it won the 2013 Car of the Year award.

“Basically, EVs were supposed to be expensive and underpowered and weak and 50 years away. Tesla showed all that was wrong. The EV will do to oil what solar will do to coal, nuclear and gas. EVs are a disruptive technology, there is no doubt about that.

“The propaganda says that it is too expensive and has little range. But if you look at the cost curve of batteries, even Detroit is saying that by 2020 lithium-ion batteries will be at $US200/kWh.

“The tipping point for the mass market to move from internal combustion engines to EVs is between $US250 and $US300/kWh. Once it gets to $US100/kWh, it is all over. I think we will get to $US250/kWh by 2020. By 2030, when batteries are at $100/kWh, gasoline vehicles will be obsolete. Not on their way out, obsolete.” Seba thinks that mass migration will start around 2018 to 2020.

On solar it is a similar story. “When I wrote my first book, a lot of people looked at me like I had three heads,” Seba says. “They thought I was way too optimistic because the conversation then was about grid parity for solar in 2060, or 2070.

“And what you hear is the same thing we heard 20 years ago, that this is not going to happen, that it is difficult, that power needs specialised scale, that it can only be done like this. When in fact, over the last few years, a country like Germany has pioneered the move from a few dozen central power plants to more than a million producers.

“Australia has done the same thing. Bangladesh has a million solar installations. So the poorest people in one of the poorest countries are adopting solar unsubsidised. Solar is already cheaper than grid – what people are paying for electricity – in dozens of countries already. And that is despite huge fossil fuel subsidies.

“The sun is more democratic than any other source of energy. Coal is in pockets, gas is in pockets, oil is in pockets. The sun shines a little bit more in some places than others, but everyone gets sunshine. And the thing about solar, is that it can be built on a distributed basis.”

Can solar really be built on a scale that would meet the bulk of the world’s electricity needs? Seba points to the computer industry, where he worked in the 1990s, and to the internet and telecommunications. All three were dominated by huge, centralised technologies. All three industries have been turned upside down by new “distributed”, or hand-held devices. He says the same thing will happen in electricity.

“This is not in the future. We are going from big centralised power plants to decentralised generation, to decentralised storage, and to decentralised distribution.

“It is just a matter of policy makers understanding this and making regulations appropriately. In India, about $30-40 billion goes to subsidise diesel. The grid there is already obsolete. It went down and 500 million people didn’t notice, because they are not on the grid.

“If they stop subsidising diesel and put it into solar, they could bring 100 million people a year into solar. If all you do is stop subsidising diesel, you can, in five years, bring solar electricity to 500 million people who are not on the grid today.

The biggest threat from all this radical change is to the traditional utility model, Seba says. “Utilities as we know them are over. They are the land line telephone companies of 20, 30 years ago. We will start using them as back-up, as world goes distributed and every house has solar, and factories do the same, and they are stuck with these stranded investments.

“What they will try to do is to keep jacking up prices – which makes solar even more affordable. It will be this death spiral. You will see bankruptcies. Finally, it will not make sense.

He says markets will be redesigned, and there will be huge opportunities for new companies – he dubs them the Ebays of the electricity world – that can aggregate and trade distributed production, and that can manage the process. More