Showing posts with label IEA. Show all posts
Showing posts with label IEA. Show all posts

Tuesday, November 24, 2015

IEA Ministers Call for Successful COP 21

18 November 2015: The International Energy Agency (IEA) held its 2015 Ministerial meeting under the theme, ‘Innovation for a Clean, Secure Energy Future.’

According to the Summary of the Chair, Ernest Moniz, US Secretary of Energy, discussions focused on “the critical role that energy sector policies and energy innovation can play to successfully combat climate change.” Among the meeting outcomes was a statement calling for the successful outcome of the 21st session of the Conference of the Parties (COP 21) to the UNFCCC.

The IEA Ministerial Statement on Energy and Climate Change highlights five key opportunities for reducing emissions from the energy sector and advance the date that emissions peak. These opportunities are: increasing energy efficiency in the industry, buildings and transport sectors; phasing-out the use of the least-efficient coal-fired power plants; increasing investment in renewable energy technologies (including hydropower); gradual phasing out of inefficient fossil-fuel subsidies to end-users; and reducing methane emissions from oil and gas production.

In the context of COP 21, the ministers call for explicit recognition and a signal that an energy transformation is necessary to achieve climate goals and that the transformation is underway. They further pledge to support their negotiators to successfully conclude an ambitious agreement.

During the meeting, ministers heard from IEA Executive Director Fatih Birol on three pillars for modernizing the IEA, the first being the opening of the IEA’s doors to membership of emerging economies. On 16 November 2015, Mexico announced its decision to pursue membership of the IEA. The second pillar, according to Birol, is broadening the IEA’s core mandate of energy security, and the third pillar relates to “transforming the Agency to become a global hub for clean energy technologies and energy efficiency.” According to the Chair’s Summary, ministers also noted an analysis by the IEA Secretariat that energy efficiency is the “first fuel” and is supporting economic growth without increasing emissions.

The meeting was held 17-18 November 2015, in Paris, France. All 29 IEA countries were represented by ministers or other high-level officials at the meeting. Nine partner countries and 30 top business executives also attended. [IEA Press Release] [Chair’s Summary] [IEA Ministerial Statement on Energy and Climate Change]

 

Friday, November 14, 2014

Signs of stress must not be ignored, IEA warns in its new World Energy Outlook

Energy sector must tackle longer-term pressure points before they reach breaking point

Events of the last year have increased many of the long-term uncertainties facing the global energy sector, says the International Energy Agency’s (IEA) World Energy Outlook 2014 (WEO-2014). It warns against the risk that current events distract decision makers from recognising and tackling the longer-term signs of stress that are emerging in the energy system.

In the central scenario of WEO-2014, world primary energy demand is 37% higher in 2040, putting more pressure on the global energy system. But this pressure would be even greater if not for efficiency measures that play a vital role in holding back global demand growth. The scenario shows that world demand for two out of the three fossil fuels – coal and oil – essentially reaches a plateau by 2040, although, for both fuels, this global outcome is a result of very different trends across countries. At the same time, renewable energy technologies gain ground rapidly, helped by falling costs and subsidies (estimated at $120 billion in 2013). By 2040, world energy supply is divided into four almost equal parts: low-carbon sources (nuclear and renewables), oil, natural gas and coal.

In an in-depth focus on nuclear power, WEO-2014 sees installed capacity grow by 60% to 2040 in the central scenario, with the increase concentrated heavily in just four countries (China, India, Korea and Russia). Despite this, the share of nuclear power in the global power mix remains well below its historic peak. Nuclear power plays an important strategic role in enhancing energy security for some countries. It also avoids almost four years’ worth of global energy-related carbon-dioxide (CO2) emissions by 2040. However, nuclear power faces major challenges in competitive markets where there are significant market and regulatory risks, and public acceptance remains a critical issue worldwide. Many countries must also make important decisions regarding the almost 200 nuclear reactors due to be retired by 2040, and how to manage the growing volumes of spent nuclear fuel in the absence of permanent disposal facilities.

“As our global energy system grows and transforms, signs of stress continue to emerge,” said IEA Executive Director Maria van der Hoeven. “But renewables are expected to go from strength to strength, and it is incredible that we can now see a point where they become the world’s number one source of electricity generation.”

The report sees a positive outlook for renewables, as they are expected to account for nearly half of the global increase in power generation to 2040, and overtake coal as the leading source of electricity. Wind power accounts for the largest share of growth in renewables-based generation, followed by hydropower and solar technologies. However, as the share of wind and solar PV in the world’s power mix quadruples, their integration becomes more challenging both from a technical and market perspective.

World oil supply rises to 104 million barrels per day (mb/d) in 2040, but hinges critically on investments in the Middle East. As tight oil output in the United States levels off, and non-OPEC supply falls back in the 2020s, the Middle East becomes the major source of supply growth. Growth in world oil demand slows to a near halt by 2040: demand in many of today’s largest consumers either already being in long-term decline by 2040 (the United States, European Union and Japan) or having essentially reached a plateau (China, Russia and Brazil). China overtakes the United States as the largest oil consumer around 2030 but, as its demand growth slows, India emerges as a key driver of growth, as do sub-Saharan Africa, the Middle East and Southeast Asia.

“A well-supplied oil market in the short-term should not disguise the challenges that lie ahead, as the world is set to rely more heavily on a relatively small number of producing countries,” said IEA Chief Economist Fatih Birol. “The apparent breathing space provided by rising output in the Americas over the next decade provides little reassurance, given the long lead times of new upstream projects.”

Demand for gas is more than 50% higher in 2040, and it is the only fossil fuel still growing significantly at that time. The United States remains the largest global gas producer, although production levels off in the late-2030s as shale gas output starts to recede. East Africa emerges alongside Qatar, Australia, North America and others as an important source of liquefied natural gas (LNG), which is an increasingly important tool for gas security. A key uncertainty for gas outside of North America is whether it can be made available at prices that are low enough to be attractive for consumers and yet high enough to incentivise large investments in supply.

While coal is abundant and its supply relatively secure, its future use is constrained by measures to improve efficiency, tackle local pollution and reduce CO2 emissions. Coal demand is 15% higher in 2040 but growth slows to a near halt in the 2020s. Regional trends vary, with demand reaching a peak in China, dropping by one-third in the United States, but continuing to grow in India.

The global energy system continues to face a major energy poverty crisis. In sub-Saharan Africa (the regional focus of WEO-2014), two out of every three people do not have access to electricity, and this is acting as a severe constraint on economic and social development. Meanwhile, costly fossil-fuel consumption subsidies (estimated at $550 billion in 2013) are often intended to help increase energy access, but fail to help those that need it most and discourage investment in efficiency and renewables.

A critical “sign of stress” is the failure to transform the energy system quickly enough to stem the rise in energy-related CO2 emissions (which grow by one-fifth to 2040) and put the world on a path consistent with a long-term global temperature increase of 2°C. In the central scenario, the entire carbon budget allowed under a 2°C climate trajectory is consumed by 2040, highlighting the need for a comprehensive and ambitious agreement at the COP21 meeting in Paris in 2015.

The World Energy Outlook is for sale at the IEA bookshop. Journalists who would like more information should contact ieapressoffice@iea.org.

Download the following resources:

About the IEA

The International Energy Agency is an autonomous organisation that works to ensure reliable, affordable and clean energy for its 29 member countries and beyond. Founded in response to the 1973/4 oil crisis, the IEA’s initial role was to help countries co-ordinate a collective response to major disruptions in oil supply. While this remains a key aspect of its work, the IEA has evolved and expanded. It is at the heart of global dialogue on energy, providing authoritative research, statistics, analysis and recommendations.

Alternative Download

 

Monday, September 29, 2014

Solar power could be world's top electricity source by 2050

Solar energy could be the top source of electricity by 2050, aided by plummeting costs of the equipment to generate it, a report from the International Energy Agency (IEA), the West’s energy watchdog, said on Monday.

IEA Reports said solar photovoltaic (PV) systems could generate up to 16% of the world’s electricity by 2050, while solar thermal electricity (STE) - from “concentrating” solar power plants - could provide a further 11%.

“The rapid cost decrease of photovoltaic modules and systems in the last few years has opened new perspectives for using solar energy as a major source of electricity in the coming years and decades,” said IEA Executive Director Maria van der Hoeven.

Solar photovoltaic (PV) panels constitute the fastest-growing renewable energy technology in the world since 2000, although solar is still less than 1% of energy capacity worldwide.

The IEA said PV expansion would be led by China, followed by the United States, while STE could also grow in the United States along with Africa, India and the Middle East. More


 

Tuesday, August 5, 2014

Energy Efficiency Simply Makes Sense

What simple tool offers the entire world an extended energy supply, increased energy security, lower carbon emissions, cleaner air and extra time to mitigate climate change? Energy efficiency. What’s more, higher efficiency can avoid infrastructure investment, cut energy bills, improve health, increase competitiveness and enhance consumer welfare — all while more than paying for itself.

Maria van der Hoeven - IEA

The challenge is getting governments, industry and citizens to take the first steps towards making these savings in energy and money.

The International Energy Agency (IEA) has long spearheaded a global move toward improved energy efficiency policy and technology in buildings, appliances, transport and industry, as well as end-use applications such as lighting. That’s because the core of our mandate is energy security — the uninterrupted availability of energy at an affordable price. Greater efficiency is a principal way to strengthen that security: it reduces reliance on energy supply, especially imports, for economic growth; mitigates threats to energy security from climate change; and lessens the global economy’s exposure to disruptions in fossil fuel supply.

In short, energy efficiency makes sense.

In 2006, the IEA presented to the Group of Eight leading industrialized nations its 25 energy efficiency recommendations, which identify best practice and policy approaches to realize the full potential of energy efficiency for our member countries. Every two years, the Agency reports on the gains made by member countries, and today we are working with a growing number of international organizations, including the European Bank for Reconstruction and Development, the Asian Development Bank and the German sustainable development cooperation services provider GIZ.

The opportunities of this “invisible fuel” are many and rich. More than half of the potential savings in industry and a whopping 80 percent of opportunities in the buildings sector worldwide remain untouched. The 25 recommendations, if adopted fully by all 28 IEA members, would save $1 trillion in annual energy costs as well as deliver incalculable security benefits in terms of energy supply and environmental protection.

Achieving even a small fraction of those gains does not require new technological breakthroughs or ruinous capital outlays: the know-how exists, and the investments generate positive returns in fuel savings and increased economic growth. What is required is foresight, patience, changed habits and the removal of the barriers to implementation of measures that are economically viable. For instance, as the World Energy Outlook 2012 demonstrates, investing less than $12 trillion in more energy-efficient technologies would not only quickly pay for itself through reduced energy costs, it would also increase cumulative economic output to 2035 by $18 trillion worldwide.

While current efforts come nowhere close to realizing the full benefits that efficiency offers, some countries are taking big steps forward. Members of the European Union have pledged to cut energy demand by 20 percent by 2020, while Japan plans to trim its electricity consumption 10 percent by 2030. China is committed to reducing the amount of energy needed for each unit of gross domestic product by 16 percent in the next two years. The United States has leaped to the forefront in transportation efficiency standards with new fuel economy rules that could more than double vehicle fuel consumption.

Such transitions entail challenges for policy, and experience shows that government and the private sector must work together to achieve the sustainability goals that societies demand, learning what works and what does not, and following the right path to optimal deployment of technology. Looking forward, energy efficiency will play a vital role in the transition to the secure and sustainable energy future that we all seek. The most secure energy is the barrel or megawatt we never have to use.

Maria van der Hoeven is the Executive Director of the International Energy Agency, an autonomous organization which works to ensure reliable, affordable and clean energy for its 28 member countries and beyond. This commentary appeared first this month in IEA Energy, the Agency’s journal.

 

Tuesday, July 1, 2014

IEA says ‘peak oil demand’ could hit as early as 2020

Little more that a year after the International Energy Agency added its voice to the chorus chiming that peak oil was dead, a new report from the uconservative adviser to industrialised nations suggests it has changed its tune. Only this time it is not peak supply that is on its radar, but peak demand.

The IEA’s Medium-Term Oil Market Report 2014 has predicted that global growth in oil demand may start to slow down as soon as the end of this decade, due to environmental concerns and cheaper alternatives, and despite boosting its 2014 forecast of global demand by 960,000 barrels per day.

While supply is forecast to remain strong – thanks largely to the unconventional, or “tight” oil revolution currently underway in north America – the IEA says it expects the global market to hit an “inflexion point”, by the end of 2019, “after which demand growth may start to decelerate due to high oil prices, environmental concerns and cheaper fuel alternatives.”

These factors, says the report, will lead to fuel-switching away from oil, as well as overall fuel savings. In short, it says, “while ‘peak demand’ for oil – other than in mature economies – may still be years away, and while there are regional differences, peak oil demand growth for the market as a whole is already in sight.”

It’s worrying news for the over-invested and under-prepared; not least of all oil importing nations, to which, as Samuel Alexander noted in this article last September, the economic costs of peak oil are especially significant.

“When oil gets expensive, everything dependent on oil gets more expensive: transport, mechanised labour, industrial food production, plastics, etc,” he wrote. “This pricing dynamic sucks discretionary expenditure and investment away from the rest of the economy, causing debt defaults, economic stagnation, recessions, or even longer-term depressions. That seems to be what we are seeing around the world today, with the risk of worse things to come.”

This then adds to the peak oil cycle, increasing governments’ motivation to decarbonise their economies – better late than never – “not only because oil has become painfully expensive, but also because the oil we are burning is environmentally unaffordable.”

This view has been echoed in numerous recent reports. US investment banks Sanford Bernstein raised the prospect of “energy price deflation”, caused by the plunging cost of solar and the taking up of market share by that technology as it displaced diesel, gas and oil in various economies. It predicted that could trigger a massive shift in capital.

Analyst Mark Fulton last month also questioned the wisdom of the private-sector investing over $1 trillion to develop new sources of high-cost oil production. While Mark Lewis, of French broking firm, suggested that $US19 trillion in revenuescould be lost from the oil industry if the world takes action to address climate change, cleans up pollution and moves to decarbonise the global energy system.

The IEA report also includes an updated forecast of product supply, which draws out the consequences of the shifts in demand, feedstock supply and refining capacity.

“Given planned refinery construction and the growth in supply that bypasses the refining sector, such as NGLs and biofuels, the refining industry faces a new cycle of weak margins and a glut of light distillates like gasoline and naphtha as a by-product of needed diesel and jet fuel,” it says.

It also predicts that “the unconventional supply revolution that has redrawn the global oil map” will expand beyond North America before the end of the decade, just as OPEC supplies face headwinds, and regional imbalances in gasoline and diesel markets broaden.

The report projects that by 2019, tight oil supply outside the United States could reach 650 000 barrels per day (650 kb/d), including 390 kb/d from Canada, 100 kb/d from Russia and 90 kb/d from Argentina. US LTO output is forecast to roughly double from 2013 levels to 5.0 million barrels per day (mb/d) by 2019.

“We are continuing to see unprecedented production growth from North America, and the United States in particular. By the end of the decade, North America will have the capacity to become a net exporter of oil liquids,” IEA Executive Director Maria van der Hoeven said as she launched the report in Paris. “At the same time, while OPEC remains a vital supplier to the market, it faces significant headwinds in expanding capacity.”

Beyond ageing fields, the major hurdle facing OPEC producers is the escalation in “above-ground woes,” as security concerns become a growing issue in producers like Iraq, and investment risks deter investment and exploration.

The report notes that as much as three-fifths of OPEC’s expected growth in capacity by 2019 is set to come from Iraq. The projected addition of 1.28 mb/d to Iraqi production by 2019, a conservative forecast made before the launch last week of a military campaign by insurgents that subsequently claimed several key cities in northern and central Iraq, faces considerable downside risk. More

 

Saturday, February 1, 2014

Peak Oil becomes an Issue Again after the IEA Revised its Predictions

Among the big energy stories of 2013, “peak oil” -- the once-popular notion that worldwide oil production would soon reach a maximum level and begin an irreversible decline -- was thoroughly discredited. The explosive development of shale oil and other unconventional fuels in the United States helped put it in its grave.

As the year went on, the eulogies came in fast and furious. “Today, it is probably safe to say we have slayed ‘peak oil’ once and for all, thanks to the combination of new shale oil and gas production techniques,” declared Rob Wile, an energy and economics reporter for Business Insider. Similar comments from energy experts were commonplace, prompting an R.I.P. headline at Time.com announcing, “Peak Oil is Dead.”

Not so fast, though. The present round of eulogies brings to mind the Mark Twain’s famous line: “The reports of my death have been greatly exaggerated.” Before obits for peak oil theory pile up too high, let's take a careful look at these assertions. Fortunately, the International Energy Agency (IEA), the Paris-based research arm of the major industrialized powers, recently did just that -- and the results were unexpected. While not exactly reinstalling peak oil on its throne, it did make clear that much of the talk of a perpetual gusher of American shale oil is greatly exaggerated. The exploitation of those shale reserves may delay the onset of peak oil for a year or so, the agency’s experts noted, but the long-term picture “has not changed much with the arrival of [shale oil].”

The IEA’s take on this subject is especially noteworthy because its assertion only a year earlier that the U.S. would overtake Saudi Arabia as the world’s number one oil producer sparked the “peak oil is dead” deluge in the first place. Writing in the2012 edition of its World Energy Outlook, the agency claimed not only that “the United States is projected to become the largest global oil producer” by around 2020, but also that with U.S. shale production and Canadian tar sands coming online, “North America becomes a net oil exporter around 2030.”

That November 2012 report highlighted the use of advanced production technologies -- notably horizontal drilling and hydraulic fracturing (“fracking”) -- to extract oil and natural gas from once inaccessible rock, especially shale. It also covered the accelerating exploitation of Canada’s bitumen (tar sands or oil sands), another resource previously considered too forbidding to be economical to develop. With the output of these and other “unconventional” fuels set to explode in the years ahead, the report then suggested, the long awaited peak of world oil production could be pushed far into the future.

The release of the 2012 edition of World Energy Outlook triggered a global frenzy of speculative reporting, much of it announcing a new era of American energy abundance. “Saudi America” was the headline over one such hosanna in the Wall Street Journal. Citing the new IEA study, that paper heralded a coming “U.S. energy boom” driven by “technological innovation and risk-taking funded by private capital.” From then on, American energy analysts spoke rapturously of the capabilities of a set of new extractive technologies, especially fracking, to unlock oil and natural gas from hitherto inaccessible shale formations. “This is a real energy revolution,” the Journal crowed.

But that was then. The most recent edition of World Energy Outlook, published this past November, was a lot more circumspect. Yes, shale oil, tar sands, and other unconventional fuels will add to global supplies in the years ahead, and, yes, technology will help prolong the life of petroleum. Nonetheless, it’s easy to forget that we are also witnessing the wholesale depletion of the world’s existing oil fields and so all these increases in shale output must be balanced against declines in conventional production. Under ideal circumstances -- high levels of investment, continuing technological progress, adequate demand and prices -- it might be possible to avert an imminent peak in worldwide production, but as the latest IEA report makes clear, there is no guarantee whatsoever that this will occur.

Inching Toward the Peak

Before plunging deeper into the IEA’s assessment, let’s take a quick look at peak oil theory itself.

As developed in the 1950s by petroleum geologist M. King Hubbert, peak oil theory holds that any individual oil field (or oil-producing country) will experience a high rate of production growth during initial development, when drills are first inserted into a oil-bearing reservoir. Later, growth will slow, as the most readily accessible resources have been drained and a greater reliance has to be placed on less productive deposits. At this point -- usually when about half the resources in the reservoir (or country) have been extracted -- daily output reaches a maximum, or “peak,” level and then begins to subside. Of course, the field or fields will continue to produce even after peaking, but ever more effort and expense will be required to extract what remains. Eventually, the cost of production will exceed the proceeds from sales, and extraction will be terminated.

Related article: Kashagan, Down but not Out

For Hubbert and his followers, the rise and decline of oil fields is an inevitable consequence of natural forces: oil exists in pressurized underground reservoirs and so will be forced up to the surface when a drill is inserted into the ground. However, once a significant share of the resources in that reservoir has been extracted, the field’s pressure will drop and artificial means -- water, gas, or chemical insertion -- will be needed to restore pressure and sustain production. Sooner or later, such means become prohibitively expensive.

Peak oil theory also holds that what is true of an individual field or set of fields is true of the world as a whole. Until about 2005, it did indeed appear that the globe was edging ever closer to a peak in daily oil output, as Hubbert’s followers had long predicted. (He died in 1989.) Several recent developments have, however,raised questions about the accuracy of the theory. In particular, major private oil companies have taken to employing advanced technologies to increase the output of the reservoirs under their control, extending the lifetime of existing fields through the use of what’s called “enhanced oil recovery,” or EOR. They’ve also used new methods to exploit fields once considered inaccessible in places like the Arctic and deep oceanic waters, thereby opening up the possibility of a most un-Hubbertian future.

In developing these new technologies, the privately owned “international oil companies” (IOCs) were seeking to overcome their principal handicap: most of the world’s “easy oil” -- the stuff Hubbert focused on that comes gushing out of the ground whenever a drill is inserted -- has already been consumed or is controlled by state-owned “national oil companies” (NOCs), including Saudi Aramco, the National Iranian Oil Company, and the Kuwait National Petroleum Company, among others. According to the IEA, such state companies control about 80% of the world’s known petroleum reserves, leaving relatively little for the IOCs to exploit.

To increase output from the limited reserves still under their control -- mostly located in North America, the Arctic, and adjacent waters -- the private firms have been working hard to develop techniques to exploit “tough oil.” In this, they have largely succeeded: they are now bringing new petroleum streams into the marketplace and, in doing so, have shaken the foundations of peak oil theory.

Those who say that “peak oil is dead” cite just this combination of factors. By extending the lifetime of existing fields through EOR and adding entire new sources of oil, the global supply can be expanded indefinitely. As a result, they claim, the world possesses a “relatively boundless supply” of oil (and natural gas). This, for instance, was the way Barry Smitherman of the Texas Railroad Commission (which regulates that state’s oil industry) described the global situation at a recent meeting of the Society of Exploration Geophysicists.

Peak Technology

In place of peak oil, then, we have a new theory that as yet has no name but might be called techno-dynamism. There is, this theory holds, no physical limit to the global supply of oil so long as the energy industry is prepared to, and allowed to, apply its technological wizardry to the task of finding and producing more of it. Daniel Yergin, author of the industry classics, The Prize and The Quest, is a key proponent of this theory. He recently summed up the situation this way: “Advances in technology take resources that were not physically accessible and turn them into recoverable reserves.” As a result, he added, “estimates of the total global stock of oil keep growing.”

From this perspective, the world supply of petroleum is essentially boundless. In addition to “conventional” oil -- the sort that comes gushing out of the ground -- the IEA identifies six other potential streams of petroleum liquids: natural gas liquids; tar sands and extra-heavy oil; kerogen oil (petroleum solids derived from shale that must be melted to become usable); shale oil; coal-to-liquids (CTL); andgas-to-liquids (GTL). Together, these “unconventional” streams could theoretically add several trillion barrels of potentially recoverable petroleum to the global supply, conceivably extending the Oil Age hundreds of years into the future (and in the process, via climate change, turning the planet into an uninhabitable desert).

But just as peak oil had serious limitations, so, too, does techno-dynamism. At its core is a belief that rising world oil demand will continue to drive the increasingly costly investments in new technologies required to exploit the remaining hard-to-get petroleum resources. As suggested in the 2013 edition of the IEA’s World Energy Outlook, however, this belief should be treated with considerable skepticism.

Among the principal challenges to the theory are these:

1. Increasing Technology Costs: While the costs of developing a resource normally decline over time as industry gains experience with the technologies involved, Hubbert's law of depletion doesn’t go away. In other words, oil firms invariably develop the easiest “tough oil” resources first, leaving the toughest (and most costly) for later. For example, the exploitation of Canada’s tar sands began with the strip-mining of deposits close to the surface. Because those are becoming exhausted, however, energy firms are now going after deep-underground reserves using far costlier technologies. Likewise, many of the most abundant shale oil deposits in North Dakota have now been depleted, requiring an increasing pace of drilling to maintain production levels. As a result, the IEA reports, the cost of developing new petroleum resources will continually increase: up to $80 per barrel for oil obtained using advanced EOR techniques, $90 per barrel for tar sands and extra-heavy oil, $100 or more for kerogen and Arctic oil, and $110 for CTL and GTL. The market may not, however, be able to sustain levels this high, putting such investments in doubt.

2. Growing Political and Environmental Risk: By definition, tough oil reserves are located in problematic areas. For example, an estimated 13% of the world’s undiscovered oil lies in the Arctic, along with 30% of its untapped natural gas. The environmental risks associated with their exploitation under the worst of weather conditions imaginable will quickly become more evident -- and so, faced with the rising potential for catastrophic spills in a melting Arctic, expect a commensurate increase in political opposition to such drilling. In fact, a recent increase has sparked protests in both Alaska and Russia, including the much-publicized September 2013 attempt by activists from Greenpeace to scale a Russian offshore oil platform -- an action that led to their seizure and arrest by Russian commandos. Similarly, expanded fracking operations have provoked a steady increase in anti-fracking activism. In response to such protests and other factors, oil firms are being forced to adopt increasingly stringent environmental protections, pumping up the cost of production further.

Related article: Buffett Looks at Pipelines after North Dakota Train Wreck

3. Climate-Related Demand Reduction: The techno-optimist outlook assumes that oil demand will keep rising, prompting investors to provide the added funds needed to develop the technologies required. However, as the effects of rampant climate change accelerate, more and more polities are likely to try to impose curbs of one sort or another on oil consumption, suppressing demand -- and so discouraging investment. This is already happening in the United States, where mandated increases in vehicle fuel-efficiency standards are expected to significantly reduce oil consumption. Future “demand destruction” of this sort is bound to impose a downward pressure on oil prices, diminishing the inclination of investors to finance costly new development projects.

Combine these three factors, and it is possible to conceive of a “technology peak” not unlike the peak in oil output originally envisioned by M. King Hubbert. Such a techno-peak is likely to occur when the “easy” sources of “tough” oil have been depleted, opponents of fracking and other objectionable forms of production have imposed strict (and costly) environmental regulations on drilling operations, and global demand has dropped below a level sufficient to justify investment in costly extractive operations. At that point, global oil production will decline even if supplies are “boundless” and technology is still capable of unlocking more oil every year.

Peak Oil Reconsidered

Peak oil theory, as originally conceived by Hubbert and his followers, was largely governed by natural forces. As we have seen, however, these can be overpowered by the application of increasingly sophisticated technology. Reservoirs of energy once considered inaccessible can be brought into production, and others once deemed exhausted can be returned to production; rather than being finite, the world’s petroleum base now appears virtually inexhaustible.

Does this mean that global oil output will continue rising, year after year, without ever reaching a peak? That appears unlikely. What seems far more probable is that we will see a slow tapering of output over the next decade or two as costs of production rise and climate change -- along with opposition to the path chosen by the energy giants -- gains momentum. Eventually, the forces tending to reduce supply will overpower those favoring higher output, and a peak in production will indeed result, even if not due to natural forces alone.

Such an outcome is, in fact, envisioned in one of three possible energy scenariosthe IEA’s mainstream experts lay out in the latest edition of World Energy Outlook. The first assumes no change in government policies over the next 25 years and sees world oil supply rising from 87 to 110 million barrels per day by 2035; the second assumes some effort to curb carbon emissions and so projects output reaching “only” 101 million barrels per day by the end of the survey period.

It’s the third trajectory, the “450 Scenario,” that should raise eyebrows. It assumes that momentum develops for a global drive to keep greenhouse gas emissions below 450 parts per million -- the maximum level at which it might be possible to prevent global average temperatures from rising above 2 degrees Celsius (and so cause catastrophic climate effects). As a result, it foresees a peak in global oil output occurring around 2020 at about 91 million barrels per day, with a decline to 78 million barrels by 2035.

It would be premature to suggest that the “450 Scenario” will be the immediate roadmap for humanity, since it’s clear enough that, for the moment, we are on a highway to hell that combines the IEA’s first two scenarios. Bear in mind, moreover, that many scientists believe a global temperature increase of even 2 degrees Celsius would be enough to produce catastrophic climate effects. But as the effects of climate change become more pronounced in our lives, count on one thing: the clamor for government action will grow more intense, and so eventually we’re likely to see some variation of the 450 Scenario take shape. In the process, the world’s demand for oil will be sharply constricted, eliminating the incentive to invest in costly new production schemes.

The bottom line: global peak oil remains in our future, even if not purely for the reasons given by Hubbert and his followers. With the gradual disappearance of “easy” oil, the major private firms are being forced to exploit increasingly tough, hard-to-reach reserves, thereby driving up the cost of production and potentially discouraging new investment at a time when climate change and environmental activism are on the rise. More

Where would you rather live? In a clean sunny environment?

Or here in the midst of an unhealthy shale oil environment.


 

Wednesday, March 27, 2013

IRENA’s announces that their latest study on international standardisation for renewable energy

IRENA’s announces that their latest study on international standardisation for renewable energy technologies is publically available at:

http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=318

IRENA’s report “International Standardisation in the Field of Renewable Energy” helps understanding how standards support a sustainable and accelerated deployment of renewable energy technologies, presents the current landscape of RET standards, and provides a number of recommendations to address identified needs and gaps in standardisation for renewables. The study identifies over 570 standards in the current RET landscape, yet finds gaps in the existing standards, particularly for post-installation aspects of RET, such as operation, maintenance and repair. It calls for a more structured information platform to make appropriate standards accessible to a variety of users. All stakeholders, including those from developing countries, need to be engaged in the standardisation process. IRENA’s analysis also underlines the importance of RET certification schemes as a risk-mitigation tool, particularly to help small-scale projects obtain financing. More

 

 

Energy Efficiency Simply Makes Sense

What simple tool offers the entire world an extended energy supply, increased energy security, lower carbon emissions, cleaner air and extra time to mitigate climate change? Energy efficiency. What's more, higher efficiency can avoid infrastructure investment, cut energy bills, improve health, increase competitiveness and enhance consumer welfare -- all while more than paying for itself.

Maria van der Hoeven

The challenge is getting governments, industry and citizens to take the first steps towards making these savings in energy and money.

The International Energy Agency (IEA) has long spearheaded a global move toward improved energy efficiency policy and technology in buildings, appliances, transport and industry, as well as end-use applications such as lighting. That's because the core of our mandate is energy security -- the uninterrupted availability of energy at an affordable price. Greater efficiency is a principal way to strengthen that security: it reduces reliance on energy supply, especially imports, for economic growth; mitigates threats to energy security from climate change; and lessens the global economy's exposure to disruptions in fossil fuel supply.

In short, energy efficiency makes sense.

In 2006, the IEA presented to the Group of Eight leading industrialized nations its 25 energy efficiency recommendations, which identify best practice and policy approaches to realize the full potential of energy efficiency for our member countries. Every two years, the Agency reports on the gains made by member countries, and today we are working with a growing number of international organizations, including the European Bank for Reconstruction and Development, the Asian Development Bank and the German sustainable development cooperation services provider GIZ.

The opportunities of this "invisible fuel" are many and rich. More than half of the potential savings in industry and a whopping 80 percent of opportunities in the buildings sector worldwide remain untouched. The 25 recommendations, if adopted fully by all 28 IEA members, would save $1 trillion in annual energy costs as well as deliver incalculable security benefits in terms of energy supply and environmental protection.

Achieving even a small fraction of those gains does not require new technological breakthroughs or ruinous capital outlays: the know-how exists, and the investments generate positive returns in fuel savings and increased economic growth. What is required is foresight, patience, changed habits and the removal of the barriers to implementation of measures that are economically viable. For instance, as the World Energy Outlook 2012 demonstrates, investing less than $12 trillion in more energy-efficient technologies would not only quickly pay for itself through reduced energy costs, it would also increase cumulative economic output to 2035 by $18 trillion worldwide.

While current efforts come nowhere close to realizing the full benefits that efficiency offers, some countries are taking big steps forward. Members of the European Union have pledged to cut energy demand by 20 percent by 2020, while Japan plans to trim its electricity consumption 10 percent by 2030. China is committed to reducing the amount of energy needed for each unit of gross domestic product by 16 percent in the next two years. The United States has leaped to the forefront in transportation efficiency standards with new fuel economy rules that could more than double vehicle fuel consumption.

Such transitions entail challenges for policy, and experience shows that government and the private sector must work together to achieve the sustainability goals that societies demand, learning what works and what does not, and following the right path to optimal deployment of technology. Looking forward, energy efficiency will play a vital role in the transition to the secure and sustainable energy future that we all seek. The most secure energy is the barrel or megawatt we never have to use. More

Maria van der Hoeven is the Executive Director of the International Energy Agency, an autonomous organization which works to ensure reliable, affordable and clean energy for its 28 member countries and beyond. This commentary appeared first this month inIEA Energy, the Agency's journal.

 

Saturday, February 9, 2013

Fossil Fuel Subsidies Are Public Enemy Number One, Says IEA

International Energy Agency (IEA) Chief Economist Fatih Birol made no bones about his opinion on fossil fuel subsidies at the European Wind Energy Association conference this year.

Birol said that “[f]ossil fuel subsidies are public enemy number one for green energy.”

Birol delivered a direct message to governments that continuing tax breaks for fossil fuels companies doesn’t make sense because renewable energies can’t compete with artificially cheap oil and gas, making it impossible to meet climate change targets.

To contend with the charge that renewable resources are too intermittent to replace fossil fuels, Birol asserted that political instability is the real culprit holding green tech back.

Birol called for “governments around the world” to end the $500 billion in annual subsidies that are given to oil and gas production (not to mention the additional subsidies given in the form of permitted externalities), according to Business Green.

Unfortunately, Birol realizes the unlikelihood of governments totally abandoning fossil fuel subsidies in the near future, especially in light of the spike in oil prices after the Arab Spring. More



 

Tuesday, November 13, 2012

World Energy Outlook 2012

The global energy map is changing in dramatic fashion, the International Energy Agency said as it launched the 2012 edition of the World Energy Outlook (WEO). The Agency's flagship publication, released today in London, said these changes will recast expectations about the role of different countries, regions and fuels in the global energy system over the coming decades.

“North America is at the forefront of a sweeping transformation in oil and gas production that will affect all regions of the world, yet the potential also exists for a similarly transformative shift in global energy efficiency,” said IEA Executive Director Maria van der Hoeven. “This year’s World Energy Outlook shows that by 2035, we can achieve energy savings equivalent to nearly a fifth of global demand in 2010. In other words, energy efficiency is just as important as unconstrained energy supply, and increased action on efficiency can serve as a unifying energy policy that brings multiple benefits.”

The WEO finds that the extraordinary growth in oil and natural gas output in the United States will mean a sea-change in global energy flows. In the New Policies Scenario, the WEO’s central scenario, the United States becomes a net exporter of natural gas by 2020 and is almost self-sufficient in energy, in net terms, by 2035. North America emerges as a net oil exporter, accelerating the switch in direction of international oil trade, with almost 90% of Middle Eastern oil exports being drawn to Asia by 2035. Links between regional gas markets will strengthen as liquefied natural gas trade becomes more flexible and contract terms evolve. While regional dynamics change, global energy demand will push ever higher, growing by more than one-third to 2035. China, India and the Middle East account for 60% of the growth; demand barely rises in the OECD, but there is a pronounced shift towards gas and renewables.

Fossil fuels will remain dominant in the global energy mix, supported by subsidies that, in 2011, jumped by almost 30% to $523 billion, due mainly to increases in the Middle East and North Africa. Global oil demand grows by 7 mb/d to 2020 and exceeds 99 mb/d in 2035, by which time oil prices reach $125/barrel in real terms (over $215/barrel in nominal terms). A surge in unconventional and deepwater oil boosts non-OPEC supply over the current decade, but the world relies increasingly on OPEC after 2020. Iraq accounts for 45% of the growth in global oil production to 2035 and becomes the second-largest global oil exporter, overtaking Russia.

While the regional picture for natural gas varies, the global outlook over the coming decades looks to be bright, as demand increases by 50% to 5 trillion cubic metres in 2035. Nearly half of the increase in production to 2035 is from unconventional gas, with most of this coming from the United States, Australia and China. Whether demand for coal carries on rising strongly or changes course radically will depend on the strength of policy decisions around lower-emissions energy sources and changes in the price of coal relative to natural gas. In the New Policies Scenario, global coal demand increases by 21% and is heavily focused in China and India.

No more than one-third of proven reserves of fossil fuels can be consumed prior to 2050 if the world is to achieve the 2 °C goal, unless carbon capture and storage (CCS) technology is widely deployed.

Renewables become the world’s second-largest source of power generation by 2015 and close in on coal as the primary source by 2035. However, this rapid increase hinges critically on continued subsidies. In 2011, these subsidies (including for biofuels) amounted to $88 billion, but over the period to 2035 need to amount to $4.8 trillion; over half of this has already been committed to existing projects or is needed to meet 2020 targets. Ambitions for nuclear have been scaled back as countries have reviewed policies following the accident at Fukushima Daiichi, but capacity is still projected to rise, led by China, Korea, India and Russia.

Water is essential to the production of energy, and the energy sector already accounts for 15% of the world’s total water use. Its needs are set to grow, making water an increasingly important criterion for assessing the viability of energy projects. In some regions, water constraints are already affecting the reliability of existing operations and they will introduce additional costs. Expanding power generation and biofuels output underpin an 85% increase in the amount consumed (the volume of water that is not returned to its source after use) through to 2035. More



 

Monday, August 27, 2012

Saudi Arabia - America’s Real Strategic Petroleum Reserve?

As oil prices ticked above $115 per barrel last week, a White House leak revealed that President Barack Obama may dip into the Strategic Petroleum Reserve (SPR), the United States' 695 million barrel stockpile of emergency fuel supplies.

The leak might have been a signal that Washington wants Gulf countries to take action to lower oil prices. It might also have been an attempt to wring the risk premium out of current prices by reassuring the market that America won't let a potential war with Iran shut off the spigot. The one thing we can say for sure is that the announcement highlights two interrelated problems with U.S. energy policy: that every president since Ronald Reagan has used Saudi Arabia as his de facto SPR and that there exist no clear standards for when to dip onto the actual SPR. Both problems have the potential to bite us -- badly.

Over the years, the United States has been surprisingly reluctant to release SPR during times of crisis, preferring instead to let Saudi Arabia handle the problem by simply increasing its production. For decades, in fact, U.S. presidents have been able to count on the Middle Eastern petro giant to pre-release oil in anticipation of times of war. For example, Riyadh flooded the market ahead of the first Gulf War and, though many do not remember, it also put extra oil on the market ahead of the U.S. invasion of Iraq in 2003. Saudi Arabia even increased its oil production after the 9/11 attacks, which badly strained U.S.-Saudi relations. Likewise, this spring, when the Obama administration was debating whether or not to release the SPR ahead of the tightening of sanctions against Iran, Saudi Arabia helpfully boosted its production above 10 million barrels per day, causing oil prices to fall more than $10 a barrel and eliminating the need for the White House to make a firm decision.

But relying on Saudi Arabia, while politically convenient, is not without risks. The most obvious is that the Saudis have come under increased pressure -- both internal and external -- as a result of their longstanding oil-for-security alliance with Washington. Iran has warned its fellow Gulf producer not to make up the slack resulting from American and European sanctions, threatening direct retaliation if it does. Saudi Arabia isn't taking any chances. In recent months, it has arrested prominent Shiite dissidents -- always suspected of possible ties to Iran --and doubled the number of Saudi National Guard forces in the Eastern Province, home to the vast majority its 2 million-plus Shiite citizens as well as the close to 90 percent of its oil production.

America's ability to fall back on the Saudis is further imperiled by the inherent instability of the kingdom's political and economic system, and is the elephant in the desert that no one talks about.

Oil markets might have taken solace in Saudi preparedness until rumors surfaced of an assassination attempt aimed at the kingdom's intelligence chief, a move purported to be a revenge killing by Iranfor similar assassinations of senior military leaders in Syria. The rumors proved to be false, but like much of the region's murky political intrigue, it moved markets and served as a reminder that a tit-for-tat game of high level assassinations is not out of the realm of possibility. The oil implications of this unpredictability are clear: It will be hard to keep global oil markets calm in the coming weeks and months. Deaths of rulers can change dynamics overnight virtually anywhere in the region, and Israel's defense policy remains an ever-present black swan. Saudi Arabia's own rumoredpursuit of new nuclear-style ballistic missiles from China adds an additional layer of uncertainty about a nuclear arms race in the region.

America's ability to fall back on the Saudis is further imperiled by the inherent instability of the kingdom's political and economic system. Saudi Arabia is going to need more and more oil revenue just to keep its population from growing restive. Riyadh-based Jadwa Investment predicts that Saudi Arabia will be forced to run budget deficits from 2014 onwards, even at a break-even price forecast of $90.70 per barrel in 2015. Other forecasts are even bleaker in the medium term, estimating the breakeven price at $110 a barrel in 2015. Either way, the kingdom's thirst for cash is likely to mean that U.S. and Saudi interests diverge. The oil-for-security deal between the two countries has destabilized the kingdom in the past by igniting support for al Qaeda in the Arabian Peninsula and it could be used again by agents of internal opposition groups. Moreover, the recent pro-democracy upheavals in Egypt, Syria, and above all Bahrain are bound to influence U.S.-Saudi relations over time in ways that are hard to predict. More