Showing posts with label resources. Show all posts
Showing posts with label resources. Show all posts

Sunday, September 14, 2014

Why Peak Oil Refuses To Die

Perhaps you’ve seen one of the recent barrage of articles claiming that fears of an imminent peak and decline in world oil production have either been dispelled (because we actually have plenty of oil) or are misplaced (because climate change is the only environmental problem we should be concerned with). I’m not buying either argument.

Richard Heinberg

Why? Let’s start with the common assertion that oil supplies are sufficiently abundant so that a peak in production is many years or decades away. Everyone agrees that planet Earth still holds plenty of petroleum or petroleum-like resources: that’s the kernel of truth at the heart of most attempted peak-oil debunkery. However, extracting and delivering those resources at an affordable price is becoming a bigger challenge year by year. For the oil industry, costs of production have rocketed; they’re currently soaring at a rate of about 10 percent annually. Producers need very high oil prices to justify going after the resources that remain—tight oil from source rocks, Arctic oil, ultra-deepwater oil, and bitumen. But oil prices have already risen to the point where many users of petroleum just can’t afford to pay more. The US economyhas a habit of responding to oil price hikes by swooning into recession, and during the shift from $20 per barrel oil to $100 per barrel oil (which occurred between 2002 and 2011), the economies of most industrialized countries began to shudder and stall. What would be their response to a sustained oil price of $150 or $200? We may never know: it remains to be seen whether the world can afford to pay what will be required for oil producers to continue wresting liquid hydrocarbons from the ground at current rates. While industry apologists who choose to focus only on the abundance of remaining petroleum resources claim that peak oil is rubbish, the market is telling Houston we have a problem.

Meanwhile some environmentalists have abandoned the subject of peak oil because they believe it’s just not relevant. For them, climate change is the only thing that matters. Society must deal with its collective carbon habit by going cold turkey on all fossil fuels. We can make the needed energy transition through the strategies of substitution and efficiency. Develop low-carbon energy sources (solar and wind, possibly nuclear), and use energy smarter! Electrify transport with battery-powered cars! Get with the program and stop wasting time on side issues!

Like the abundant-resource argument, this line of thinking proceeds from an unassailable premise. Anthropogenic climate change is indeed the nastiest, gnarliest environmental issue humanity has ever faced. The potential consequences stretch centuries or millennia into the future and imperil not just humanity, but thousands or millions of other species. But peak oil won’t go away just because it’s an inconvenient distraction from addressing that gargantuan issue. In fact, the two problems are closely linked and society will need to address both by way of a realistic, comprehensive strategy. I’ll get back to that point toward the end of this essay.

Is the necessary transition to renewable energy a simple matter of politics and regulation, as many climate campaigners seem to suggest? Hardly. Transitioning the electricity sector is a huge task in itself (the variability of wind and solar power implies soaring costs for energy storage, capacity redundancy, and grid upgrades once these sources start to provide a substantial portion of total electrical energy consumed). But liquid fuels pose an even bigger hurdle. Even the most advanced batteries do a poor job of storing energy when compared to oil; that’s why we’re unlikely ever to see electric airplanes, tractors, ships, 18-wheel trucks, or bulldozers. Some energy pundits tout compressed natural gas as a viable bridge fuel for transport, but that assumes sufficient availability and continued affordability of fracked shale gas—a prospect that seems highly unlikely in view of the results of Post Carbon Institute’s ongoing research into possible shale gas drilling locations and per-well production profiles. Hydrogen could be a niche fuel in some instances, but conversion from other energy sources (electricity or natural gas) to hydrogen implies energy losses, as does hydrogen storage. Further, if we were to make lots of H2 from water, using electricity, in order to fuel much of the transport sector, this would place an enormous extra burden on solar and wind, which already face a daunting job replacing coal and natural gas in the power generation sector.

How about energy efficiency? Good idea! We need to cut energy waste, and the folks at Rocky Mountain Institute have proposed many good ways of doing that. But, at the end of the day, efficiency is subject to the law of diminishing returns; so, while the tie between energy consumption and economic output is somewhat elastic, it cannot be severed. Specifically regarding oil: yes, many nations have reduced petroleum consumption in the last few years as a way of adapting to higher prices. But the fact that their economies have weakened suggests that efficiency gains have tended to lag behind oil price increases. Average vehicle fuel economy has improved, but not fast enough—so our main “efficiency” strategy has in reality simply been to travel less, and then deal with the withdrawal of economic benefits that cheap transport formerly provided.

None of this is trivial: oil is essential to the functioning of the modern industrial world. We use it for just about all transportation, which is key to trade. It’s also the fuel for construction, resource extraction (mining, fishing, forestry), and agriculture. Together, these sectors form the backbone of the real, physical economy of industrialized nations.

Again: the costs of oil production are rising and oil is stubbornly hard to substitute. As I argued in a recent book, this effectively spells the end of the historic period of rapid economic growth that began shortly after World War II. There is no way out; inevitably, society will become less mobile and—this should be cause for much greater concern—it will either produce less food or produce it in more labor-intensive ways.

Of course, peak oil and climate change aren’t the only looming challenges we should be concerned about. Economists rightly worry that the world is mired in far too much debt. Ecologists warn us about biodiversity loss, pervasive chemical pollution, and human overpopulation. Food system analysts try (usually in vain) to direct public attention toward the predicaments of topsoil degradation and depletion of aquifers from over-irrigation. Public health professionals caution us about the specter of pandemics as antibiotics lose effectiveness due to rapid microbial evolution. For city managers, the crumbling of water, sewerage, bridge, gas, and electricity grid infrastructure implies countless disasters just waiting to happen. I could go on. It’s all so overwhelming! Perhaps the only way to avoid crisis fatigue these days is simply to stop paying attention. But amid all these priorities and problems, peak oil refuses to die.

Those of us who insist on paying attention sooner or later get around to doing a form of mental triage. What are the worst crises that humanity faces over the long run? Which are the worst in the short term? What are the deeper issues, of which many problems are mere symptoms? This sorting process has led many systems thinkers to the conclusion that our species, in essence, faces an ecological dilemma of overpopulation, resource depletion, and environmental degradation resulting from a relatively brief period of rapid expansion enabled by a huge but temporary energy subsidy in the form of fossil fuels. We discovered buried treasure and went on a spending binge, adopting a way of life that cannot be supported long-term. Peak oil, climate change, mineral depletion, soil degradation, species loss, and the rest are justwords that blind men use to describe an elephant.

What we must do now is treat symptoms while keeping in mind the root disease, seeing why and how various crises are related. I have a couple of suggestions in this regard. One is that we begin to speak of peak oil and climate change as two sides of the same coin. The coin itself represents our reliance on fossil fuels and their unique energetic benefits. Both side-problems (the declining economic value of fossil fuels as they deplete, on one side, and the increasing environmental cost of burning them, on the other) demand that we reduce our fossil fuel dependency as rapidly as possible, even though that means sacrificing benefits we have come to depend on. If we maintain this holistic view of the situation, we’re more likely to understand that there is no way to keep eating our cake while having it too, either by continuing to burn fossil fuels of declining quality or by relying on new technology to fix what is actually an ecological problem. We can’t frack our way back to economic prosperity; nor can we unplug a coal plant, plug in a solar panel, and go on expanding population and consumption. We will have to adapt to the quantities and qualities of energy that are actually available from renewable sources alone, and that will mean changing the way we do just about everything.

Which brings me to the second, related suggestion. The constellation of challenges before us ensures that economic growth, as we have known it, is over, finished, kaput. That’s a terrible thing, in that the end of growth will almost certainly entail financial and political turbulence with real human casualties. But from the standpoint of diagnosis and treatment, it simplifies everything marvelously. If our impending crises stem from fossil-fueled expansion of population and consumption, their resolution surely starts with a coordinated, planned, and managed program of decarbonization and degrowth. We must reduce population and energy consumption from fossil fuels, while minimizing the human and environmental impacts of both past growth and the process of contraction. Easily said, not so easily done. But if civilization is to maintain itself in any recognizable form, this is what’s necessary. It would really help if those of us working at treating the various symptoms of the global meta-crisistogether acknowledged that growth is a core part of the underlying problem, not a solution, and that it is effectively over in any case.

Ignore peak oil (this could equally be said of climate change), and our view of the global problem-set immediately becomes distorted. We grasp at apparent solutions that turn out to be a useless waste of effort, or worse. Peak oil helps us understand what we’re faced with, and what we must do. It’s a gift wrapped in a curse. And it refuses to go away no matter how often it is pronounced dead.

By. Richard Heinberg

 

Wednesday, April 23, 2014

“Climate Change War” Is Not a Metaphor

The U.N. Intergovernmental Panel on Climate Change has just completed a series of landmark reports that chronicle an update to the current state of consensus science on climate change. In a sentence, here’s what they found: On our current path, climate change could pose an irreversible, existential risk to civilization as we know it—but we can still fix it if we decide to work together.

But in addition to the call for cooperation, the reports also shared an alarming new trend: Climate change is already destabilizing nations and leading to wars.

That finding was highlighted in this week’s premiere of Showtime’s new star-studded climate change docu-drama Years of Living Dangerously. In the series’ first episode, New York Times columnist Thomas Friedman traveled to Syria to investigate how a long-running drought has contributed to that conflict. Climate change has also been discussed as a “threat multiplier” for recent conflicts in Darfur, Tunisia, Egypt, and future conflicts, too.

Climate change worsens the divide between haves and have-nots, hitting the poor the hardest. It can also drive up food prices and spawn megadisasters, creating refugees and taxing the resiliency of governments.

When a threat like that comes along, it’s impossible to ignore. Especially if your job is national security.

In a recent interview with the blog Responding to Climate Change, retired Army Brig. Gen. Chris King laid out the military’s thinking on climate change:

“This is like getting embroiled in a war that lasts 100 years. That’s the scariest thing for us,” he told RTCC. “There is no exit strategy that is available for many of the problems. You can see in military history, when they don’t have fixed durations, that’s when you’re most likely to not win.”

In a similar vein, last month, retired Navy Rear Adm. David Titley co-wrote an op-edfor Fox News:

The parallels between the political decisions regarding climate change we have made and the decisions that led Europe to World War One are striking – and sobering. The decisions made in 1914 reflected political policies pursued for short-term gains and benefits, coupled with institutional hubris, and a failure to imagine and understand the risks or to learn from recent history.

In short, climate change could be the Archduke Franz Ferdinand of the 21st century.

Earlier this year, while at the American Meteorological Society annual meeting in Atlanta, I had a chance to sit down with Titley, who is also a meteorologist and now serves on the faculty at Penn State University. He’s also probably one of the most fascinating people I’ve ever spoken with. Check out his TEDxPentagon talk, in which he discusses how he went from “a pretty hard-core skeptic about climate change” to labeling it “one of the pre-eminent challenges of our century.” (This interview has been lightly edited and condensed.)

Slate: You’ve been a leader when it comes to talking about climate change as a national security issue. What’s your take on the connection between war and climate?

Titley: Climate change did not cause the Arab spring, but could it have been a contributing factor? I think that seems pretty reasonable. This was a food-importing region, with poor governance. And then the chain of events conspires to have really a bad outcome. You get a spike in food prices, and all of a sudden, nobody’s in control of events.

I see climate change as one of the driving forces in the 21st century. With modern technology and globalization, we are much more connected than ever before. The world’s warehouses are now container ships. Remember the Icelandic volcano with the unpronounceable name? Now, that’s not a climate change issue, but some of the people hit worst were flower growers in Kenya. In 24 hours, their entire business model disappeared. You can’t eat flowers.

Slate: What’s the worst-case scenario, in your view?

Titley: There will be a discrete event or series of events that will change the calculus. I don’t know who, I don’t know how violent. To quote Niels Bohr: Predictions are tough, especially about the future. When it comes, that will be a black swan. The question is then, do we change?

Let me give you a few examples of how that might play out. You could imagine a scenario in which both Russia and China have prolonged droughts. China decides to exert rights on foreign contracts and gets assertive in Africa. If you start getting instability in large powers with nuclear weapons, that’s not a good day.

Here’s another one: We basically do nothing on emissions. Sea level keeps rising, three to six feet by the end of the century. Then, you get a series of super-typhoons into Shanghai and millions of people die. Does the population there lose faith in Chinese government? Does China start to fissure? I’d prefer to deal with a rising, dominant China any day.

Slate: That sounds incredibly daunting. How could we head off a threat like that?

Titley: I like to think of climate action as a three-legged stool. There’s business saying, “This is a risk factor.” Coca-Cola needs to preserve its water rights, Boeing has their supply change management, Exxon has all but priced carbon in. They have influence in the Republican Party. There’s a growing divestment movement. The big question is, does it get into the California retirement fund, the New York retirement fund, those $100 billion funds that will move markets? Politicians also have responsibility to act if the public opinion changes. Flooding, storms, droughts are all getting people talking about climate change. I wonder if someday Atlanta will run out of water?

Think back to the Apollo program. President Kennedy motivated us to land a man on the moon. How that will play out exactly this time around, I don’t know. When we talk about climate, we need to do everything we can to set the stage before the actors come on. And they may only have one chance at success. We should keep thinking: How do we maximize that chance of success?

Climate change isn’t just an environmental issue; it’s a technology, water, food, energy, population issue. None of this happens in a vacuum.

Slate: Despite all the data and debates, the public still isn’t taking that great of an interest in climate change. According to Gallup, the fraction of Americans worrying about climate “a great deal” is still roughly one-third, about the same level as in 1989. Do you think that could ever change?

Titley: A lot of people who doubt climate change got co-opted by a libertarian agenda that tried to convince the public the science was uncertain—you know, theMerchants of Doubt. Unfortunately, there’s a lot of people in high places who understand the science but don’t like where the policy leads them: too much government control.

Where are the free-market, conservative ideas? The science is settled. Instead, we should have a legitimate policy debate between the center-right and the center-left on what to do about climate change. If you’re a conservative—half of America—why would you take yourself out of the debate? C’mon, don’t be stupid. Conservative people want to conserve things. Preserving the climate should be high on that list.

Slate: What could really change in the debate on climate?

Titley: We need to start prioritizing people, not polar bears. We’re probably less adaptable than them, anyway. The farther you are from the Beltway, the more you can have a conversation about climate no matter how people vote. I never try to politicize the issue.

Most people out there are just trying to keep their job and provide for their family. If climate change is now a once-in-a-mortgage problem, and if food prices start to spike, people will pay attention. Factoring in sea-level rise, storms like Hurricane Katrina and Sandy could become not once-in-100-year events, but once-in-a-mortgage events. I lost my house in Waveland, Miss., during Katrina. I’ve experienced what that’s like.

Slate: How quickly could the debate shift? How can we get past the stalemate on climate change and start focusing on what to do about it?

Titley: People working on climate change should prepare for catastrophic success. I mean, look at how quickly the gay rights conversation changed in this country. Ten years ago, it was at best a fringe thing. Nowadays, it’s much, much more accepted. Is that possible with climate change? I don’t know, but 10 years ago, if you brought up the possibility we’d have gay marriages in dozens of states in 2014, a friend might have said “Are you on drugs?” When we get focused, we can do amazing things. Unfortunately, it’s usually at the last minute, usually under duress.

This article is part of Future Tense, a collaboration among Arizona State University, the New America Foundation, and Slate. Future Tense explores the ways emerging technologies affect society, policy, and culture. To read more, visit the Future Tense blog and the Future Tense home page. You can also follow us on Twitter.

The U.N. Intergovernmental Panel on Climate Change has just completed a series of landmark reports that chronicle an update to the current state of consensus science on climate change. In a sentence, here’s what they found: On our current path, climate change could pose an irreversible, existential risk to civilization as we know it—but we can still fix it if we decide to work together.

But in addition to the call for cooperation, the reports also shared an alarming new trend: Climate change is already destabilizing nations and leading to wars.

That finding was highlighted in this week’s premiere of Showtime’s new star-studded climate change docu-drama Years of Living Dangerously. In the series’ first episode, New York Times columnist Thomas Friedman traveled to Syria to investigate how a long-running drought has contributed to that conflict. Climate change has also been discussed as a “threat multiplier” for recent conflicts in Darfur, Tunisia, Egypt, and future conflicts, too.

Climate change worsens the divide between haves and have-nots, hitting the poor the hardest. It can also drive up food prices and spawn megadisasters, creating refugees and taxing the resiliency of governments.

When a threat like that comes along, it’s impossible to ignore. Especially if your job is national security.

In a recent interview with the blog Responding to Climate Change, retired Army Brig. Gen. Chris King laid out the military’s thinking on climate change:

“This is like getting embroiled in a war that lasts 100 years. That’s the scariest thing for us,” he told RTCC. “There is no exit strategy that is available for many of the problems. You can see in military history, when they don’t have fixed durations, that’s when you’re most likely to not win.”

In a similar vein, last month, retired Navy Rear Adm. David Titley co-wrote an op-edfor Fox News:

The parallels between the political decisions regarding climate change we have made and the decisions that led Europe to World War One are striking – and sobering. The decisions made in 1914 reflected political policies pursued for short-term gains and benefits, coupled with institutional hubris, and a failure to imagine and understand the risks or to learn from recent history.

In short, climate change could be the Archduke Franz Ferdinand of the 21st century.

Earlier this year, while at the American Meteorological Society annual meeting in Atlanta, I had a chance to sit down with Titley, who is also a meteorologist and now serves on the faculty at Penn State University. He’s also probably one of the most fascinating people I’ve ever spoken with. Check out his TEDxPentagon talk, in which he discusses how he went from “a pretty hard-core skeptic about climate change” to labeling it “one of the pre-eminent challenges of our century.” (This interview has been lightly edited and condensed.)

Slate: You’ve been a leader when it comes to talking about climate change as a national security issue. What’s your take on the connection between war and climate?

Titley: Climate change did not cause the Arab spring, but could it have been a contributing factor? I think that seems pretty reasonable. This was a food-importing region, with poor governance. And then the chain of events conspires to have really a bad outcome. You get a spike in food prices, and all of a sudden, nobody’s in control of events.

I see climate change as one of the driving forces in the 21st century. With modern technology and globalization, we are much more connected than ever before. The world’s warehouses are now container ships. Remember the Icelandic volcano with the unpronounceable name? Now, that’s not a climate change issue, but some of the people hit worst were flower growers in Kenya. In 24 hours, their entire business model disappeared. You can’t eat flowers.

Slate: What’s the worst-case scenario, in your view?

Titley: There will be a discrete event or series of events that will change the calculus. I don’t know who, I don’t know how violent. To quote Niels Bohr: Predictions are tough, especially about the future. When it comes, that will be a black swan. The question is then, do we change?

Let me give you a few examples of how that might play out. You could imagine a scenario in which both Russia and China have prolonged droughts. China decides to exert rights on foreign contracts and gets assertive in Africa. If you start getting instability in large powers with nuclear weapons, that’s not a good day.

Here’s another one: We basically do nothing on emissions. Sea level keeps rising, three to six feet by the end of the century. Then, you get a series of super-typhoons into Shanghai and millions of people die. Does the population there lose faith in Chinese government? Does China start to fissure? I’d prefer to deal with a rising, dominant China any day. More

 

Saturday, February 1, 2014

Peak Oil becomes an Issue Again after the IEA Revised its Predictions

Among the big energy stories of 2013, “peak oil” -- the once-popular notion that worldwide oil production would soon reach a maximum level and begin an irreversible decline -- was thoroughly discredited. The explosive development of shale oil and other unconventional fuels in the United States helped put it in its grave.

As the year went on, the eulogies came in fast and furious. “Today, it is probably safe to say we have slayed ‘peak oil’ once and for all, thanks to the combination of new shale oil and gas production techniques,” declared Rob Wile, an energy and economics reporter for Business Insider. Similar comments from energy experts were commonplace, prompting an R.I.P. headline at Time.com announcing, “Peak Oil is Dead.”

Not so fast, though. The present round of eulogies brings to mind the Mark Twain’s famous line: “The reports of my death have been greatly exaggerated.” Before obits for peak oil theory pile up too high, let's take a careful look at these assertions. Fortunately, the International Energy Agency (IEA), the Paris-based research arm of the major industrialized powers, recently did just that -- and the results were unexpected. While not exactly reinstalling peak oil on its throne, it did make clear that much of the talk of a perpetual gusher of American shale oil is greatly exaggerated. The exploitation of those shale reserves may delay the onset of peak oil for a year or so, the agency’s experts noted, but the long-term picture “has not changed much with the arrival of [shale oil].”

The IEA’s take on this subject is especially noteworthy because its assertion only a year earlier that the U.S. would overtake Saudi Arabia as the world’s number one oil producer sparked the “peak oil is dead” deluge in the first place. Writing in the2012 edition of its World Energy Outlook, the agency claimed not only that “the United States is projected to become the largest global oil producer” by around 2020, but also that with U.S. shale production and Canadian tar sands coming online, “North America becomes a net oil exporter around 2030.”

That November 2012 report highlighted the use of advanced production technologies -- notably horizontal drilling and hydraulic fracturing (“fracking”) -- to extract oil and natural gas from once inaccessible rock, especially shale. It also covered the accelerating exploitation of Canada’s bitumen (tar sands or oil sands), another resource previously considered too forbidding to be economical to develop. With the output of these and other “unconventional” fuels set to explode in the years ahead, the report then suggested, the long awaited peak of world oil production could be pushed far into the future.

The release of the 2012 edition of World Energy Outlook triggered a global frenzy of speculative reporting, much of it announcing a new era of American energy abundance. “Saudi America” was the headline over one such hosanna in the Wall Street Journal. Citing the new IEA study, that paper heralded a coming “U.S. energy boom” driven by “technological innovation and risk-taking funded by private capital.” From then on, American energy analysts spoke rapturously of the capabilities of a set of new extractive technologies, especially fracking, to unlock oil and natural gas from hitherto inaccessible shale formations. “This is a real energy revolution,” the Journal crowed.

But that was then. The most recent edition of World Energy Outlook, published this past November, was a lot more circumspect. Yes, shale oil, tar sands, and other unconventional fuels will add to global supplies in the years ahead, and, yes, technology will help prolong the life of petroleum. Nonetheless, it’s easy to forget that we are also witnessing the wholesale depletion of the world’s existing oil fields and so all these increases in shale output must be balanced against declines in conventional production. Under ideal circumstances -- high levels of investment, continuing technological progress, adequate demand and prices -- it might be possible to avert an imminent peak in worldwide production, but as the latest IEA report makes clear, there is no guarantee whatsoever that this will occur.

Inching Toward the Peak

Before plunging deeper into the IEA’s assessment, let’s take a quick look at peak oil theory itself.

As developed in the 1950s by petroleum geologist M. King Hubbert, peak oil theory holds that any individual oil field (or oil-producing country) will experience a high rate of production growth during initial development, when drills are first inserted into a oil-bearing reservoir. Later, growth will slow, as the most readily accessible resources have been drained and a greater reliance has to be placed on less productive deposits. At this point -- usually when about half the resources in the reservoir (or country) have been extracted -- daily output reaches a maximum, or “peak,” level and then begins to subside. Of course, the field or fields will continue to produce even after peaking, but ever more effort and expense will be required to extract what remains. Eventually, the cost of production will exceed the proceeds from sales, and extraction will be terminated.

Related article: Kashagan, Down but not Out

For Hubbert and his followers, the rise and decline of oil fields is an inevitable consequence of natural forces: oil exists in pressurized underground reservoirs and so will be forced up to the surface when a drill is inserted into the ground. However, once a significant share of the resources in that reservoir has been extracted, the field’s pressure will drop and artificial means -- water, gas, or chemical insertion -- will be needed to restore pressure and sustain production. Sooner or later, such means become prohibitively expensive.

Peak oil theory also holds that what is true of an individual field or set of fields is true of the world as a whole. Until about 2005, it did indeed appear that the globe was edging ever closer to a peak in daily oil output, as Hubbert’s followers had long predicted. (He died in 1989.) Several recent developments have, however,raised questions about the accuracy of the theory. In particular, major private oil companies have taken to employing advanced technologies to increase the output of the reservoirs under their control, extending the lifetime of existing fields through the use of what’s called “enhanced oil recovery,” or EOR. They’ve also used new methods to exploit fields once considered inaccessible in places like the Arctic and deep oceanic waters, thereby opening up the possibility of a most un-Hubbertian future.

In developing these new technologies, the privately owned “international oil companies” (IOCs) were seeking to overcome their principal handicap: most of the world’s “easy oil” -- the stuff Hubbert focused on that comes gushing out of the ground whenever a drill is inserted -- has already been consumed or is controlled by state-owned “national oil companies” (NOCs), including Saudi Aramco, the National Iranian Oil Company, and the Kuwait National Petroleum Company, among others. According to the IEA, such state companies control about 80% of the world’s known petroleum reserves, leaving relatively little for the IOCs to exploit.

To increase output from the limited reserves still under their control -- mostly located in North America, the Arctic, and adjacent waters -- the private firms have been working hard to develop techniques to exploit “tough oil.” In this, they have largely succeeded: they are now bringing new petroleum streams into the marketplace and, in doing so, have shaken the foundations of peak oil theory.

Those who say that “peak oil is dead” cite just this combination of factors. By extending the lifetime of existing fields through EOR and adding entire new sources of oil, the global supply can be expanded indefinitely. As a result, they claim, the world possesses a “relatively boundless supply” of oil (and natural gas). This, for instance, was the way Barry Smitherman of the Texas Railroad Commission (which regulates that state’s oil industry) described the global situation at a recent meeting of the Society of Exploration Geophysicists.

Peak Technology

In place of peak oil, then, we have a new theory that as yet has no name but might be called techno-dynamism. There is, this theory holds, no physical limit to the global supply of oil so long as the energy industry is prepared to, and allowed to, apply its technological wizardry to the task of finding and producing more of it. Daniel Yergin, author of the industry classics, The Prize and The Quest, is a key proponent of this theory. He recently summed up the situation this way: “Advances in technology take resources that were not physically accessible and turn them into recoverable reserves.” As a result, he added, “estimates of the total global stock of oil keep growing.”

From this perspective, the world supply of petroleum is essentially boundless. In addition to “conventional” oil -- the sort that comes gushing out of the ground -- the IEA identifies six other potential streams of petroleum liquids: natural gas liquids; tar sands and extra-heavy oil; kerogen oil (petroleum solids derived from shale that must be melted to become usable); shale oil; coal-to-liquids (CTL); andgas-to-liquids (GTL). Together, these “unconventional” streams could theoretically add several trillion barrels of potentially recoverable petroleum to the global supply, conceivably extending the Oil Age hundreds of years into the future (and in the process, via climate change, turning the planet into an uninhabitable desert).

But just as peak oil had serious limitations, so, too, does techno-dynamism. At its core is a belief that rising world oil demand will continue to drive the increasingly costly investments in new technologies required to exploit the remaining hard-to-get petroleum resources. As suggested in the 2013 edition of the IEA’s World Energy Outlook, however, this belief should be treated with considerable skepticism.

Among the principal challenges to the theory are these:

1. Increasing Technology Costs: While the costs of developing a resource normally decline over time as industry gains experience with the technologies involved, Hubbert's law of depletion doesn’t go away. In other words, oil firms invariably develop the easiest “tough oil” resources first, leaving the toughest (and most costly) for later. For example, the exploitation of Canada’s tar sands began with the strip-mining of deposits close to the surface. Because those are becoming exhausted, however, energy firms are now going after deep-underground reserves using far costlier technologies. Likewise, many of the most abundant shale oil deposits in North Dakota have now been depleted, requiring an increasing pace of drilling to maintain production levels. As a result, the IEA reports, the cost of developing new petroleum resources will continually increase: up to $80 per barrel for oil obtained using advanced EOR techniques, $90 per barrel for tar sands and extra-heavy oil, $100 or more for kerogen and Arctic oil, and $110 for CTL and GTL. The market may not, however, be able to sustain levels this high, putting such investments in doubt.

2. Growing Political and Environmental Risk: By definition, tough oil reserves are located in problematic areas. For example, an estimated 13% of the world’s undiscovered oil lies in the Arctic, along with 30% of its untapped natural gas. The environmental risks associated with their exploitation under the worst of weather conditions imaginable will quickly become more evident -- and so, faced with the rising potential for catastrophic spills in a melting Arctic, expect a commensurate increase in political opposition to such drilling. In fact, a recent increase has sparked protests in both Alaska and Russia, including the much-publicized September 2013 attempt by activists from Greenpeace to scale a Russian offshore oil platform -- an action that led to their seizure and arrest by Russian commandos. Similarly, expanded fracking operations have provoked a steady increase in anti-fracking activism. In response to such protests and other factors, oil firms are being forced to adopt increasingly stringent environmental protections, pumping up the cost of production further.

Related article: Buffett Looks at Pipelines after North Dakota Train Wreck

3. Climate-Related Demand Reduction: The techno-optimist outlook assumes that oil demand will keep rising, prompting investors to provide the added funds needed to develop the technologies required. However, as the effects of rampant climate change accelerate, more and more polities are likely to try to impose curbs of one sort or another on oil consumption, suppressing demand -- and so discouraging investment. This is already happening in the United States, where mandated increases in vehicle fuel-efficiency standards are expected to significantly reduce oil consumption. Future “demand destruction” of this sort is bound to impose a downward pressure on oil prices, diminishing the inclination of investors to finance costly new development projects.

Combine these three factors, and it is possible to conceive of a “technology peak” not unlike the peak in oil output originally envisioned by M. King Hubbert. Such a techno-peak is likely to occur when the “easy” sources of “tough” oil have been depleted, opponents of fracking and other objectionable forms of production have imposed strict (and costly) environmental regulations on drilling operations, and global demand has dropped below a level sufficient to justify investment in costly extractive operations. At that point, global oil production will decline even if supplies are “boundless” and technology is still capable of unlocking more oil every year.

Peak Oil Reconsidered

Peak oil theory, as originally conceived by Hubbert and his followers, was largely governed by natural forces. As we have seen, however, these can be overpowered by the application of increasingly sophisticated technology. Reservoirs of energy once considered inaccessible can be brought into production, and others once deemed exhausted can be returned to production; rather than being finite, the world’s petroleum base now appears virtually inexhaustible.

Does this mean that global oil output will continue rising, year after year, without ever reaching a peak? That appears unlikely. What seems far more probable is that we will see a slow tapering of output over the next decade or two as costs of production rise and climate change -- along with opposition to the path chosen by the energy giants -- gains momentum. Eventually, the forces tending to reduce supply will overpower those favoring higher output, and a peak in production will indeed result, even if not due to natural forces alone.

Such an outcome is, in fact, envisioned in one of three possible energy scenariosthe IEA’s mainstream experts lay out in the latest edition of World Energy Outlook. The first assumes no change in government policies over the next 25 years and sees world oil supply rising from 87 to 110 million barrels per day by 2035; the second assumes some effort to curb carbon emissions and so projects output reaching “only” 101 million barrels per day by the end of the survey period.

It’s the third trajectory, the “450 Scenario,” that should raise eyebrows. It assumes that momentum develops for a global drive to keep greenhouse gas emissions below 450 parts per million -- the maximum level at which it might be possible to prevent global average temperatures from rising above 2 degrees Celsius (and so cause catastrophic climate effects). As a result, it foresees a peak in global oil output occurring around 2020 at about 91 million barrels per day, with a decline to 78 million barrels by 2035.

It would be premature to suggest that the “450 Scenario” will be the immediate roadmap for humanity, since it’s clear enough that, for the moment, we are on a highway to hell that combines the IEA’s first two scenarios. Bear in mind, moreover, that many scientists believe a global temperature increase of even 2 degrees Celsius would be enough to produce catastrophic climate effects. But as the effects of climate change become more pronounced in our lives, count on one thing: the clamor for government action will grow more intense, and so eventually we’re likely to see some variation of the 450 Scenario take shape. In the process, the world’s demand for oil will be sharply constricted, eliminating the incentive to invest in costly new production schemes.

The bottom line: global peak oil remains in our future, even if not purely for the reasons given by Hubbert and his followers. With the gradual disappearance of “easy” oil, the major private firms are being forced to exploit increasingly tough, hard-to-reach reserves, thereby driving up the cost of production and potentially discouraging new investment at a time when climate change and environmental activism are on the rise. More

Where would you rather live? In a clean sunny environment?

Or here in the midst of an unhealthy shale oil environment.