Showing posts with label environment. Show all posts
Showing posts with label environment. Show all posts

Friday, June 16, 2017

Bermuda Government seeks feedback on fuels policy


National fuels policy is the subject of a new government discussion paper — and the Department of Energy is now seeking public feedback on it.

The policy sets out the government’s aims of achieving a mix of fuels that is cost effective and less polluting.

The document, which is available on this webpage under the heading of Related Media, can also be found on the Bermuda Government web portal or in hard copy from the Department of Energy at the Government Administration Building, 3rd floor, 30 Parliament Street.

The deadline for written comments on the policy document is close of business on July 7, 2017, submitted via e-mail to energy@gov.bm or by hand at the Department of Energy, Government Administration Building, 3rd floor, 30 Parliament Street.

The Department says it will review all information obtained and respond to each submission.

Jeane Nikolai, Department of Energy director, said: “Fuels is another essential pillar of the energy sector which directly affects the local community and economy. The New Fuels Sector Policy will mark the beginning of Bermuda’s road towards a fiscally transparent, efficient and environmentally sensitive fuel regime.” More

National Fuels Policy Document

Sunday, August 3, 2014

The High Cost of Gas Exports - Australia

The impact of LNG exports, particularly of coal seam gas, on Australian industry continues to be the topic of debate, with one recent report warning that there it will further destroy the local manufacturing industry (already reeling from Dutch disease) - High gas prices threaten thousands of jobs, billions of dollars: industry.

A new report warns the riches promised by exporting Australian gas may have a devastating impact on local industries, particularly manufacturing. A coalition of half-a-dozen industry groups commissioned the report by Deloitte Access Economics.

The report says domestic gas prices are rapidly rising as the market links in with international prices. It warns that, if the rise goes unchecked, the manufacturing sector alone will contract by as much as $118 billion by 2021, with nearly 15,000 jobs lost. The report also finds that mining might contract by $34 billion and agriculture by $4.5 billion.

Peak Energy: The high price of gas exports

 

Thursday, June 5, 2014

Renewable Sources Provide Over 20% Of Global Power Production

Global renewable electricity energy capacity rose to a new record level last year — more than 1,560 gigawatts (GW), up 8% from 2012. More than 22 % of the world’s power production now comes from renewable sources. Renewables currently meet almost one-fifth of world final energy consumption.

That is one of the conclusion of the new Renewables Global Status Report published by REN21, “the global renewable energy policy multi-stakeholder network.”

The Renewables Global Status Report relies on up-to-date renewable energy data , provided by an international network of more than 500 contributors, researchers, and authors.

With developing world’spolicy support, global renewable energy generation capacity jumped to a record level; 95 emerging economies now nurture renewable energy growth through supportive policies, up six-fold from just 15 countries in 2005.

These 95 developing nations make up the vast majority of the 144 countries with renewable energy support policies and targets in place. The rise of developing world support contrasts with declining support and renewables policy uncertainty and even retroactive support reductions in some European countries and the United States.

In 2013, an estimated 6.5 million people worldwide worked directly or indirectly in the renewable energy sector. O ther important developments include:

• Renewable energy provided 19% of global final energy consumption in 2012, and continued to grow in 2013. Of this total share in 2012, modern renewables accounted for 10% with the remaining 9% coming from traditional biomass the share of which is declining.

• Heating and cooling from modern biomass, solar, and geothermal sources account for a small but gradually rising share of final global heat demand, amounting to an estimated 10%.

• Liquid biofuels provide about 2.3% of global transport fuel demand.

• Hydropower rose by 4% to approximately 1,000 GW in 2013, accounting for about one-third of renewable power capacity added during the year. Other renewables collectively grew nearly 17% to an estimated 560 GW.

• The solar PV market had a record year, adding about 39 GW in 2013 for a total of approximately 139 GW. For the first time, more solar PV than wind power capacity was added worldwide, accounting for about one-third of renewable power capacity added during the year. Even as global investment in solar PV declined nearly 22% relative to 2012, new capacity installations increased by more than 32%. China saw spectacular growth, accounting for nearly one third of global capacity added, followed by Japan and the United States.

• More than 35 GW of wind power capacity was added in 2013, totalling just more than 318 GW. However, despite several record years, the market was down nearly 10 GW compared to 2012, reflecting primarily a steep drop in the U.S. market. Offshore wind had a record year, with 1.6 GW added, almost all of it in the EU.

• China, the United States, Brazil, Canada, and Germany remained the top countries for total installed renewable power capacity. China’s new renewable power capacity surpassed new fossil fuel and nuclear capacity for the first time.

• Growing numbers of cities, states, and regions seek to transition to 100% renewable energy in either individual sectors or economy-wide. For example, Djibouti, Scotland, and the small-island state of Tuvalu aim to derive 100% of their electricity from renewable sources by 2020.

• Uruguay, Mauritius, and Costa Rica were among the top countries for investment in new renewable power and fuels relative to annual GDP.

• Global new investment in renewable power and fuels was at least USD 249.4 billion in 2013 down from its record level in 2011. More

 

Saturday, March 15, 2014

Europe 24 Air Traffic

This data visualization of Air Traffic in Europe was created from real flight data. It shows the air traffic which flies on a typical summer day and highlights the intensity of the operation in Europe - an operation which runs 24x7x365.

NATS and the UK are at the heart of the operation. With Heathrow as the busiest international airport in Europe, and Gatwick as the busiest single runway airport in the world, the UK plays a key role in ensuring air traffic under our control in European airspace is as safe and efficient as it can be.

The question and the elephant in the skies is of course how much fossil fuel is burned and converted into carbon dioxide by aviation globally on a daily basis? For those of us that live on small low lying islands (SIDS) the outcome will be disasterous as our homes will eventually be submerged by rising sea level. Editor

Saturday, February 1, 2014

Peak Oil becomes an Issue Again after the IEA Revised its Predictions

Among the big energy stories of 2013, “peak oil” -- the once-popular notion that worldwide oil production would soon reach a maximum level and begin an irreversible decline -- was thoroughly discredited. The explosive development of shale oil and other unconventional fuels in the United States helped put it in its grave.

As the year went on, the eulogies came in fast and furious. “Today, it is probably safe to say we have slayed ‘peak oil’ once and for all, thanks to the combination of new shale oil and gas production techniques,” declared Rob Wile, an energy and economics reporter for Business Insider. Similar comments from energy experts were commonplace, prompting an R.I.P. headline at Time.com announcing, “Peak Oil is Dead.”

Not so fast, though. The present round of eulogies brings to mind the Mark Twain’s famous line: “The reports of my death have been greatly exaggerated.” Before obits for peak oil theory pile up too high, let's take a careful look at these assertions. Fortunately, the International Energy Agency (IEA), the Paris-based research arm of the major industrialized powers, recently did just that -- and the results were unexpected. While not exactly reinstalling peak oil on its throne, it did make clear that much of the talk of a perpetual gusher of American shale oil is greatly exaggerated. The exploitation of those shale reserves may delay the onset of peak oil for a year or so, the agency’s experts noted, but the long-term picture “has not changed much with the arrival of [shale oil].”

The IEA’s take on this subject is especially noteworthy because its assertion only a year earlier that the U.S. would overtake Saudi Arabia as the world’s number one oil producer sparked the “peak oil is dead” deluge in the first place. Writing in the2012 edition of its World Energy Outlook, the agency claimed not only that “the United States is projected to become the largest global oil producer” by around 2020, but also that with U.S. shale production and Canadian tar sands coming online, “North America becomes a net oil exporter around 2030.”

That November 2012 report highlighted the use of advanced production technologies -- notably horizontal drilling and hydraulic fracturing (“fracking”) -- to extract oil and natural gas from once inaccessible rock, especially shale. It also covered the accelerating exploitation of Canada’s bitumen (tar sands or oil sands), another resource previously considered too forbidding to be economical to develop. With the output of these and other “unconventional” fuels set to explode in the years ahead, the report then suggested, the long awaited peak of world oil production could be pushed far into the future.

The release of the 2012 edition of World Energy Outlook triggered a global frenzy of speculative reporting, much of it announcing a new era of American energy abundance. “Saudi America” was the headline over one such hosanna in the Wall Street Journal. Citing the new IEA study, that paper heralded a coming “U.S. energy boom” driven by “technological innovation and risk-taking funded by private capital.” From then on, American energy analysts spoke rapturously of the capabilities of a set of new extractive technologies, especially fracking, to unlock oil and natural gas from hitherto inaccessible shale formations. “This is a real energy revolution,” the Journal crowed.

But that was then. The most recent edition of World Energy Outlook, published this past November, was a lot more circumspect. Yes, shale oil, tar sands, and other unconventional fuels will add to global supplies in the years ahead, and, yes, technology will help prolong the life of petroleum. Nonetheless, it’s easy to forget that we are also witnessing the wholesale depletion of the world’s existing oil fields and so all these increases in shale output must be balanced against declines in conventional production. Under ideal circumstances -- high levels of investment, continuing technological progress, adequate demand and prices -- it might be possible to avert an imminent peak in worldwide production, but as the latest IEA report makes clear, there is no guarantee whatsoever that this will occur.

Inching Toward the Peak

Before plunging deeper into the IEA’s assessment, let’s take a quick look at peak oil theory itself.

As developed in the 1950s by petroleum geologist M. King Hubbert, peak oil theory holds that any individual oil field (or oil-producing country) will experience a high rate of production growth during initial development, when drills are first inserted into a oil-bearing reservoir. Later, growth will slow, as the most readily accessible resources have been drained and a greater reliance has to be placed on less productive deposits. At this point -- usually when about half the resources in the reservoir (or country) have been extracted -- daily output reaches a maximum, or “peak,” level and then begins to subside. Of course, the field or fields will continue to produce even after peaking, but ever more effort and expense will be required to extract what remains. Eventually, the cost of production will exceed the proceeds from sales, and extraction will be terminated.

Related article: Kashagan, Down but not Out

For Hubbert and his followers, the rise and decline of oil fields is an inevitable consequence of natural forces: oil exists in pressurized underground reservoirs and so will be forced up to the surface when a drill is inserted into the ground. However, once a significant share of the resources in that reservoir has been extracted, the field’s pressure will drop and artificial means -- water, gas, or chemical insertion -- will be needed to restore pressure and sustain production. Sooner or later, such means become prohibitively expensive.

Peak oil theory also holds that what is true of an individual field or set of fields is true of the world as a whole. Until about 2005, it did indeed appear that the globe was edging ever closer to a peak in daily oil output, as Hubbert’s followers had long predicted. (He died in 1989.) Several recent developments have, however,raised questions about the accuracy of the theory. In particular, major private oil companies have taken to employing advanced technologies to increase the output of the reservoirs under their control, extending the lifetime of existing fields through the use of what’s called “enhanced oil recovery,” or EOR. They’ve also used new methods to exploit fields once considered inaccessible in places like the Arctic and deep oceanic waters, thereby opening up the possibility of a most un-Hubbertian future.

In developing these new technologies, the privately owned “international oil companies” (IOCs) were seeking to overcome their principal handicap: most of the world’s “easy oil” -- the stuff Hubbert focused on that comes gushing out of the ground whenever a drill is inserted -- has already been consumed or is controlled by state-owned “national oil companies” (NOCs), including Saudi Aramco, the National Iranian Oil Company, and the Kuwait National Petroleum Company, among others. According to the IEA, such state companies control about 80% of the world’s known petroleum reserves, leaving relatively little for the IOCs to exploit.

To increase output from the limited reserves still under their control -- mostly located in North America, the Arctic, and adjacent waters -- the private firms have been working hard to develop techniques to exploit “tough oil.” In this, they have largely succeeded: they are now bringing new petroleum streams into the marketplace and, in doing so, have shaken the foundations of peak oil theory.

Those who say that “peak oil is dead” cite just this combination of factors. By extending the lifetime of existing fields through EOR and adding entire new sources of oil, the global supply can be expanded indefinitely. As a result, they claim, the world possesses a “relatively boundless supply” of oil (and natural gas). This, for instance, was the way Barry Smitherman of the Texas Railroad Commission (which regulates that state’s oil industry) described the global situation at a recent meeting of the Society of Exploration Geophysicists.

Peak Technology

In place of peak oil, then, we have a new theory that as yet has no name but might be called techno-dynamism. There is, this theory holds, no physical limit to the global supply of oil so long as the energy industry is prepared to, and allowed to, apply its technological wizardry to the task of finding and producing more of it. Daniel Yergin, author of the industry classics, The Prize and The Quest, is a key proponent of this theory. He recently summed up the situation this way: “Advances in technology take resources that were not physically accessible and turn them into recoverable reserves.” As a result, he added, “estimates of the total global stock of oil keep growing.”

From this perspective, the world supply of petroleum is essentially boundless. In addition to “conventional” oil -- the sort that comes gushing out of the ground -- the IEA identifies six other potential streams of petroleum liquids: natural gas liquids; tar sands and extra-heavy oil; kerogen oil (petroleum solids derived from shale that must be melted to become usable); shale oil; coal-to-liquids (CTL); andgas-to-liquids (GTL). Together, these “unconventional” streams could theoretically add several trillion barrels of potentially recoverable petroleum to the global supply, conceivably extending the Oil Age hundreds of years into the future (and in the process, via climate change, turning the planet into an uninhabitable desert).

But just as peak oil had serious limitations, so, too, does techno-dynamism. At its core is a belief that rising world oil demand will continue to drive the increasingly costly investments in new technologies required to exploit the remaining hard-to-get petroleum resources. As suggested in the 2013 edition of the IEA’s World Energy Outlook, however, this belief should be treated with considerable skepticism.

Among the principal challenges to the theory are these:

1. Increasing Technology Costs: While the costs of developing a resource normally decline over time as industry gains experience with the technologies involved, Hubbert's law of depletion doesn’t go away. In other words, oil firms invariably develop the easiest “tough oil” resources first, leaving the toughest (and most costly) for later. For example, the exploitation of Canada’s tar sands began with the strip-mining of deposits close to the surface. Because those are becoming exhausted, however, energy firms are now going after deep-underground reserves using far costlier technologies. Likewise, many of the most abundant shale oil deposits in North Dakota have now been depleted, requiring an increasing pace of drilling to maintain production levels. As a result, the IEA reports, the cost of developing new petroleum resources will continually increase: up to $80 per barrel for oil obtained using advanced EOR techniques, $90 per barrel for tar sands and extra-heavy oil, $100 or more for kerogen and Arctic oil, and $110 for CTL and GTL. The market may not, however, be able to sustain levels this high, putting such investments in doubt.

2. Growing Political and Environmental Risk: By definition, tough oil reserves are located in problematic areas. For example, an estimated 13% of the world’s undiscovered oil lies in the Arctic, along with 30% of its untapped natural gas. The environmental risks associated with their exploitation under the worst of weather conditions imaginable will quickly become more evident -- and so, faced with the rising potential for catastrophic spills in a melting Arctic, expect a commensurate increase in political opposition to such drilling. In fact, a recent increase has sparked protests in both Alaska and Russia, including the much-publicized September 2013 attempt by activists from Greenpeace to scale a Russian offshore oil platform -- an action that led to their seizure and arrest by Russian commandos. Similarly, expanded fracking operations have provoked a steady increase in anti-fracking activism. In response to such protests and other factors, oil firms are being forced to adopt increasingly stringent environmental protections, pumping up the cost of production further.

Related article: Buffett Looks at Pipelines after North Dakota Train Wreck

3. Climate-Related Demand Reduction: The techno-optimist outlook assumes that oil demand will keep rising, prompting investors to provide the added funds needed to develop the technologies required. However, as the effects of rampant climate change accelerate, more and more polities are likely to try to impose curbs of one sort or another on oil consumption, suppressing demand -- and so discouraging investment. This is already happening in the United States, where mandated increases in vehicle fuel-efficiency standards are expected to significantly reduce oil consumption. Future “demand destruction” of this sort is bound to impose a downward pressure on oil prices, diminishing the inclination of investors to finance costly new development projects.

Combine these three factors, and it is possible to conceive of a “technology peak” not unlike the peak in oil output originally envisioned by M. King Hubbert. Such a techno-peak is likely to occur when the “easy” sources of “tough” oil have been depleted, opponents of fracking and other objectionable forms of production have imposed strict (and costly) environmental regulations on drilling operations, and global demand has dropped below a level sufficient to justify investment in costly extractive operations. At that point, global oil production will decline even if supplies are “boundless” and technology is still capable of unlocking more oil every year.

Peak Oil Reconsidered

Peak oil theory, as originally conceived by Hubbert and his followers, was largely governed by natural forces. As we have seen, however, these can be overpowered by the application of increasingly sophisticated technology. Reservoirs of energy once considered inaccessible can be brought into production, and others once deemed exhausted can be returned to production; rather than being finite, the world’s petroleum base now appears virtually inexhaustible.

Does this mean that global oil output will continue rising, year after year, without ever reaching a peak? That appears unlikely. What seems far more probable is that we will see a slow tapering of output over the next decade or two as costs of production rise and climate change -- along with opposition to the path chosen by the energy giants -- gains momentum. Eventually, the forces tending to reduce supply will overpower those favoring higher output, and a peak in production will indeed result, even if not due to natural forces alone.

Such an outcome is, in fact, envisioned in one of three possible energy scenariosthe IEA’s mainstream experts lay out in the latest edition of World Energy Outlook. The first assumes no change in government policies over the next 25 years and sees world oil supply rising from 87 to 110 million barrels per day by 2035; the second assumes some effort to curb carbon emissions and so projects output reaching “only” 101 million barrels per day by the end of the survey period.

It’s the third trajectory, the “450 Scenario,” that should raise eyebrows. It assumes that momentum develops for a global drive to keep greenhouse gas emissions below 450 parts per million -- the maximum level at which it might be possible to prevent global average temperatures from rising above 2 degrees Celsius (and so cause catastrophic climate effects). As a result, it foresees a peak in global oil output occurring around 2020 at about 91 million barrels per day, with a decline to 78 million barrels by 2035.

It would be premature to suggest that the “450 Scenario” will be the immediate roadmap for humanity, since it’s clear enough that, for the moment, we are on a highway to hell that combines the IEA’s first two scenarios. Bear in mind, moreover, that many scientists believe a global temperature increase of even 2 degrees Celsius would be enough to produce catastrophic climate effects. But as the effects of climate change become more pronounced in our lives, count on one thing: the clamor for government action will grow more intense, and so eventually we’re likely to see some variation of the 450 Scenario take shape. In the process, the world’s demand for oil will be sharply constricted, eliminating the incentive to invest in costly new production schemes.

The bottom line: global peak oil remains in our future, even if not purely for the reasons given by Hubbert and his followers. With the gradual disappearance of “easy” oil, the major private firms are being forced to exploit increasingly tough, hard-to-reach reserves, thereby driving up the cost of production and potentially discouraging new investment at a time when climate change and environmental activism are on the rise. More

Where would you rather live? In a clean sunny environment?

Or here in the midst of an unhealthy shale oil environment.


 

Saturday, January 25, 2014

Message To World Elites: Don’t Bet On Coal And Oil Growth

Davos 2014

A mind-boggling sum of about US$ 800 for each person on the planet is invested into fossil fuel companies through the global capital markets alone. That’s roughly 10% of the total capital invested in listed companies. The amount of money invested into the 200 biggest fossil fuel companies through financial markets is estimated at US$ 5.5 trillion.

By keeping their money in coal and oil companies, investors are betting a vast amount of wealth, including the pensions and savings of millions of people, on high future demand for dirty fuels. The investment has enabled fossil fuel companies to massively raise their spending on expanding extractable reserves, with oil and gas companies alone (state-owned ones included) spending the combined GDP of Netherlands and Belgium a year, in belief that there will be ongoing demand for dirty fuel.

This assumption is being challenged by recent developments, which is good news for climate but bad news for anyone who thought investing in fossil fuel industries was a safe bet. Frantic growth in coal consumption seems to be coming to an end much sooner than predicted just a few years ago, with China’s aggressive clean airpolicies, rapidly dropping coal consumption in the US and upcoming closures of many coal plants in Europe. At the same time the oil industry is also facing slowingdemand growth, and the financial and share performance of oil majors is disappointing for shareholders.

Nevertheless, even faced with weakening demand prospects, outdated investment patterns are driving fossil fuel companies to waste trillions of dollars in developing reserves and infrastructure that will be stranded as the world moves beyond 20th century energy.

A good example is coal export developments. The large recent investment in coal export capacity in all key exporter countries was based on the assumption of unlimited growth of Chinese demand. When public outrage over air pollution reached a new level in 2012-2013, the Chinese leadership moved swiftly to mandate absolute reductions in coal consumption, and banned new coal-fired power plants in key economic regions. A growing chorus of financial analysts is now projecting a peak in Chinese coal demand soon, which seemed unimaginable only a couple of years ago. This new reality has already reduced market capitalization of export-focused coal companies. Even in China itself, investment in coal-fired power plants has now outpaced demand growth, leading to drops in capacity utilization.

Another example of potentially stranded assets is found in Europe, where large utilities ignored the writing on the wall about EU moves to price carbon and boost renewable energy. Betting on old business models and the fossil-fuel generation, they built a huge 80 gigawatts of new fossil power generation capacity in the past 10 years, much of which is already generating losses and now risk becoming stranded assets.

Arctic oil drilling is possibly the ultimate example of fossil companies’ unfounded confidence in high future demand. Any significant production and revenue is unlikely until 2030 and in the meantime, Arctic drilling faces high and uncertain costs, extremely demanding and risky operations, as well as the prospect of heavy regulation and liabilities when (not if) the first major blowout happens in the region. No wonder the International Energy Agency is sceptical about Arctic oil, assuming hardly any production in the next 20 years. More

 

Friday, November 15, 2013

Richard Heinberg's Museletter - The Climate-PR Puzzle

How do we effectively communicate an important but difficult message, even as it appears to fall on deaf ears? The first essay in this month's Museletter addresses this thorny issue, one which I face every day in my work here at PCI, and which will be familiar to many of you. The second essay is a reminder that in some places the message is getting through and that change does happen. Richard hopes that you will find some hope in his report from a recent visit to Seoul, Korea.

The Climate-PR Puzzle

If we hope to avert climate apocalypse in the decades ahead, we must make fundamental changes to industrial society. Before those changes can be approved and implemented, citizens and policy makers must first come to understand they are essential to our survival. Public relations—the management of the spread of information between an individual or organization and the public—will be an unavoidably necessary tool in the process.

But a PR message capable of persuading policy makers and citizens to end society’s environmental rampage remains elusive. In this essay I hope to explore why an effective PR message is so hard to formulate, and how the whole project might be reconsidered.

Let’s start with what needs to be conveyed. After years of research and thought, I would summarize our dilemma with three general conclusions:

1. Energy is the biggest single issue facing us as a species.*

Global warming—by far the worst environmental challenge humans have ever confronted—results from our current fossil-fuel energy regime, and averting catastrophic climate change will require us to end our reliance on coal, oil, and natural gas. Ocean acidification is also a consequence of burning fossil fuels, and most other environmental crises (like nitrogen runoff pollution and most air pollution) can be traced to the same source.

Therefore ending our addiction to fossil fuels is essential if we want future generations of humans (and countless other species) to inherit a habitable a planet. But these energy sources are “unsustainable” also in a more basic, economic sense of the term: oil, gas, and coal are depleting, non-renewable resources. Already, depletion of the easy-and-cheap sources of petroleum that drove economic growth in the 20th century has led to persistently high oil prices, which are a drag on the economy. We have picked the low-hanging fruit of the world’s petroleum resources, and as time goes on all sources of fossil energy will become more financially costly and environmentally risky to extract. This is a big problem because the economy is 100 percent dependent on energy. With lots of cheap energy, problems of all kinds are easy to solve (running out of fresh water? Just build a desalination plant!); when energy becomes expensive and hard to get, problems multiply and converge.

One way or another, whether our concern is the environment or economic growth, it’s mostly about energy.

_________________

*Arguably, overpopulation is as big an issue as our energy-climate conundrum. I’ve chosen not to focus on it here merely to streamline the narrative. There are many feedbacks between population, energy, and climate, and these deserve discussion elsewhere.

2. We are headed toward a (nearly) all-renewable-energy economy one way or the other, and planning is essential if we want to get there in one piece.

If society is to avoid civilization-threatening levels of climate change, the use of fossil fuels will have to be reduced proactively by 80-90 percent by 2050.

At the same time, despite the claims of abundance of unconventional fuels (shale gas, tight oil, tar sands) by the fossil fuel industry, evidence overwhelmingly shows that drillers are investing increasing effort to achieve diminishing returns.

Either way, fossil fuels are on their way out.

Most nations have concluded that nuclear is too costly and risky, and supplies of uranium are limited.

That leaves renewable energy sources—solar, wind, hydro, geothermal, tidal, and wave power—to power the economy of the future.

3. In the process of transition, the ways that society uses energy must change at least as much as the ways society produces energy.

Every energy source possesses a unique set of characteristics: some sources are more portable than others, or more concentrated, intermittent, scalable, diffuse, renewable, environmentally risky, or financially costly. We have built our current economy to take advantage of the special properties of fossil fuels. The renewable energy sources that are available to replace oil, gas, and coal have very different characteristics and will therefore tend to support a different kind of economy—one that is less mobile, more rooted in place; less globalized, more localized; less when-we-want-it, more when-it’s-available; less engineered, more organic.

At the same time, the sheer quantity of energy that will be available during the transition from fossil to renewable sources is in doubt. While ever-more-rapid rates of extraction of fossil fuels powered a growing economy during the 20th century, society will struggle to maintain current levels of total energy production in the 21st, let alone grow it to meet projected demand. Indeed, there are credible scenarios in which available energy could decline significantly. And we will have to invest a lot of the fossil energy we do have in building post-fossil energy infrastructure. Energy efficiency can help along the way, but only marginally.

The global economy will almost certainly stagnate or contract accordingly.

There it is. It is a complicated message. I’ve just conveyed it in 661 words punctuated by three short summary sentences (here’s a summation of the summation: it’s all about energy; renewables are the future; growth is over.) However, only readers with a lot of prior knowledge will be able to truly understand some of these words and phrases. And many people who are capable of making sense of what I’ve written would disagree with, or dismiss, much of it. The message faces a tough audience, and it flies against deep-seated interests.

Many economists and politicians don’t buy the assertion that energy is at the core of our species-wide survival challenge. They think the game of human success-or-failure revolves around money, military power, or technological advancement. If we toggle prices, taxes, and interest rates; maintain proper trade rules; invest in technology R&D; and discourage military challenges to the current international order, then growth can continue indefinitely and everything will be fine. Climate change and resource depletion are peripheral problems that can be dealt with through pricing mechanisms or regulations.

Fossil fuel companies may understand the importance of energy, but they have a powerful incentive to avoid acceptance of the message that “renewables are the future.” If humanity is headed toward an all-renewable energy economy, then their business has no future. The industry’s strategy for diverting the general public’s buy-in to conclusion 2 is to claim that there is plenty of oil, gas, and coal available to fuel society for decades to come.

Some policy wonks buy “it’s all about energy,” but are jittery about “renewables are the future” and won’t go anywhere near “growth is over.” A few of these folks like to think of themselves as environmentalists (sometimes calling themselves “bright green”)—including the Breakthrough Institute and writers like Stewart Brand and Mark Lynas. A majority of government officials are effectively in the same camp, viewing nuclear power, natural gas, carbon capture and storage (“clean coal”), and further technological innovation as pathways to the solution of the climate crisis without any need for curtailment of economic growth.

Other environment-friendly folks buy “it’s all about energy” and “renewables are the future,” but still remain allergic to the notion that “growth is over.” They say we can transition to 100 percent renewable power with no sacrifice in terms of economic growth, comfort, or convenience. Stanford professor Mark Jacobson and Amory Lovins of Rocky Mountain Institute are leaders of this chorus. Theirs is a reassuring message, but if it doesn’t happen to be factually true (and there are many energy experts who argue persuasively that it isn’t), then it’s of limited helpfulness because it fails to recommend the kinds or degrees of change in energy usage that are essential to a successful transition.

The general public tends to listen to one or another of these groups, all of which agree that the climate and energy challenge of the 21st century can be met without sacrificing economic growth. This widespread aversion to the “growth is over” conclusion is entirely understandable: during the last century, the economies of industrial nations were engineered to require continual growth in order to produce jobs, returns on investments, and increasing tax revenues to fund government services. Conclusion 3, which questions whether growth can continue, is therefore deeply subversive. Nearly everyone has an incentive to ignore or avoid it. It’s not only objectionable to economic conservatives, it is abhorent to many progressives who believe economies must continue to grow so that the “under-developed” world can improve standards of living.

But ignoring uncomfortable facts seldom makes them go away. Often it just makes matters worse. Back in the 1970s, when environmental limits were first becoming apparent, catastrophe could have been averted with only a relatively small course correction—a gradual tapering of growth and a slow decline in fossil fuel reliance. Now, only a “cold turkey” approach will suffice. If a critical majority of people couldn’t be persuaded then of the need for a gentle course correction, can they now be talked into undertaking deliberate change on a scale and at a speed that might be nearly as traumatic as the climate collision we’re trying to avoid?

To be sure, there are those who do accept the message that “growth is over”: most are hard-core environmentalists or energy experts. But this is a tiny and poorly organized demographic. If public relations consists of the management of information flowing from an organization to the public, then it surely helps to start with an organization wealthy enough to be able to afford to mount a serious public relations campaign.

This is all quite discouraging, to the point that a fourth conclusion seems justified: More